cleaned up collision in shader, abstracted out raycast, and added gpu timing

This commit is contained in:
2024-10-03 15:04:14 -04:00
parent 4ddf2ddc87
commit 0dc5a9c2ba
21 changed files with 575 additions and 1187 deletions

View File

@@ -19,7 +19,7 @@ use system::render::add_grid;
use crate::{ use crate::{
common::{ClientMessage, ServerHandle, ServerMessage}, common::{ClientMessage, ServerHandle, ServerMessage},
server::Server, server::Server, util::timer::Timer,
}; };
use self::{input::Input, render::Renderer, ClientState}; use self::{input::Input, render::Renderer, ClientState};
@@ -37,6 +37,7 @@ pub struct Client<'a> {
window: Arc<Window>, window: Arc<Window>,
state: ClientState, state: ClientState,
renderer: Renderer<'a>, renderer: Renderer<'a>,
render_timer: Timer,
render_commands: Vec<RenderCommand>, render_commands: Vec<RenderCommand>,
exit: bool, exit: bool,
input: Input, input: Input,
@@ -78,6 +79,7 @@ impl Client<'_> {
window, window,
exit: false, exit: false,
renderer, renderer,
render_timer: Timer::new(60),
render_commands: Vec::new(), render_commands: Vec::new(),
state, state,
input: Input::new(), input: Input::new(),
@@ -132,17 +134,18 @@ impl Client<'_> {
commands.extend(world_cmds); commands.extend(world_cmds);
self.renderer.handle_commands(commands); self.renderer.handle_commands(commands);
self.renderer.draw(); self.renderer.draw();
self.render_timer.add(self.renderer.timer().duration(0));
} }
if now >= self.second_target { if now >= self.second_target {
self.second_target += Duration::from_secs(1); self.second_target += Duration::from_secs(1);
// let timer = self.renderer.timer(); let timer = &self.render_timer;
// println!( println!(
// "avg: {:4?}; max: {:4?}; fps: {:4?}", "avg: {:4?}; max: {:4?}; fps: {:4?}",
// timer.avg(), timer.avg(),
// timer.max(), timer.max(),
// timer.per_sec(), timer.per_sec(),
// ); );
} }
if self.exit { if self.exit {

View File

@@ -7,8 +7,6 @@ use super::{voxel::VoxelColor, Renderer};
use bevy_ecs::entity::Entity; use bevy_ecs::entity::Entity;
use nalgebra::{Rotation3, Vector3}; use nalgebra::{Rotation3, Vector3};
use ndarray::Array3; use ndarray::Array3;
use std::sync::Arc;
use winit::window::Window;
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub enum RenderCommand { pub enum RenderCommand {
@@ -76,7 +74,6 @@ impl<'a> Renderer<'a> {
&self.device, &self.device,
&mut self.encoder, &mut self.encoder,
&mut self.staging_belt, &mut self.staging_belt,
self.size,
&self.camera, &self.camera,
); );
} }

View File

@@ -8,7 +8,7 @@ pub use command::*;
use super::camera::Camera; use super::camera::Camera;
use crate::client::rsc::CLEAR_COLOR; use crate::client::rsc::CLEAR_COLOR;
use nalgebra::Vector2; use nalgebra::Vector2;
use util::DepthTexture; use util::GPUTimer;
use voxel::VoxelPipeline; use voxel::VoxelPipeline;
use winit::{dpi::PhysicalSize, window::Window}; use winit::{dpi::PhysicalSize, window::Window};
@@ -21,14 +21,12 @@ pub struct Renderer<'a> {
config: wgpu::SurfaceConfiguration, config: wgpu::SurfaceConfiguration,
staging_belt: wgpu::util::StagingBelt, staging_belt: wgpu::util::StagingBelt,
voxel_pipeline: VoxelPipeline, voxel_pipeline: VoxelPipeline,
timer: GPUTimer,
camera: Camera, camera: Camera,
depth_texture: DepthTexture,
} }
impl<'a> Renderer<'a> { impl<'a> Renderer<'a> {
pub fn new( pub fn new(window: Arc<Window>) -> Self {
window: Arc<Window>,
) -> Self {
let size = window.inner_size(); let size = window.inner_size();
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
@@ -47,11 +45,13 @@ impl<'a> Renderer<'a> {
})) }))
.expect("Could not get adapter!"); .expect("Could not get adapter!");
let buf_size = (10u32.pow(9) * 15) / 10; let buf_size = (10f32.powi(9) * 1.5) as u32;
let (device, queue) = pollster::block_on(adapter.request_device( let (device, queue) = pollster::block_on(adapter.request_device(
&wgpu::DeviceDescriptor { &wgpu::DeviceDescriptor {
label: None, label: None,
required_features: wgpu::Features::empty(), required_features: wgpu::Features::TIMESTAMP_QUERY
| wgpu::Features::TIMESTAMP_QUERY_INSIDE_ENCODERS
| wgpu::Features::TIMESTAMP_QUERY_INSIDE_PASSES,
required_limits: wgpu::Limits { required_limits: wgpu::Limits {
max_storage_buffer_binding_size: buf_size, max_storage_buffer_binding_size: buf_size,
max_buffer_size: buf_size as u64, max_buffer_size: buf_size as u64,
@@ -94,8 +94,6 @@ impl<'a> Renderer<'a> {
// doesn't affect performance much and depends on "normal" zoom // doesn't affect performance much and depends on "normal" zoom
let staging_belt = wgpu::util::StagingBelt::new(4096 * 4); let staging_belt = wgpu::util::StagingBelt::new(4096 * 4);
let depth_texture = DepthTexture::init(&device, &config, "depth_texture");
Self { Self {
camera: Camera::default(), camera: Camera::default(),
size: Vector2::new(size.width, size.height), size: Vector2::new(size.width, size.height),
@@ -103,10 +101,10 @@ impl<'a> Renderer<'a> {
staging_belt, staging_belt,
surface, surface,
encoder: Self::create_encoder(&device), encoder: Self::create_encoder(&device),
timer: GPUTimer::new(&device, 1),
device, device,
config, config,
queue, queue,
depth_texture,
} }
} }
@@ -135,7 +133,9 @@ impl<'a> Renderer<'a> {
label: None, label: None,
timestamp_writes: None, timestamp_writes: None,
}); });
self.timer.start_compute(&mut compute_pass, 0);
self.voxel_pipeline.compute(&mut compute_pass); self.voxel_pipeline.compute(&mut compute_pass);
self.timer.stop_compute(&mut compute_pass, 0);
drop(compute_pass); drop(compute_pass);
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
@@ -148,14 +148,6 @@ impl<'a> Renderer<'a> {
store: wgpu::StoreOp::Store, store: wgpu::StoreOp::Store,
}, },
})], })],
// depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
// view: &self.depth_texture.view,
// depth_ops: Some(wgpu::Operations {
// load: wgpu::LoadOp::Clear(1.0),
// store: wgpu::StoreOp::Store,
// }),
// stencil_ops: None,
// }),
depth_stencil_attachment: None, depth_stencil_attachment: None,
timestamp_writes: None, timestamp_writes: None,
occlusion_query_set: None, occlusion_query_set: None,
@@ -163,10 +155,14 @@ impl<'a> Renderer<'a> {
self.voxel_pipeline.draw(&mut render_pass); self.voxel_pipeline.draw(&mut render_pass);
drop(render_pass); drop(render_pass);
self.timer.resolve(&mut encoder);
self.staging_belt.finish(); self.staging_belt.finish();
self.queue.submit(std::iter::once(encoder.finish())); self.queue.submit(std::iter::once(encoder.finish()));
output.present(); output.present();
self.staging_belt.recall(); self.staging_belt.recall();
self.timer.finish(&self.device);
} }
pub fn resize(&mut self, size: PhysicalSize<u32>) { pub fn resize(&mut self, size: PhysicalSize<u32>) {
@@ -175,14 +171,15 @@ impl<'a> Renderer<'a> {
self.config.height = size.height; self.config.height = size.height;
self.surface.configure(&self.device, &self.config); self.surface.configure(&self.device, &self.config);
self.voxel_pipeline.resize(&self.device, self.size); self.voxel_pipeline.resize(&self.device, self.size);
self.depth_texture = DepthTexture::init(&self.device, &self.config, "depth_texture");
self.voxel_pipeline.update_view( self.voxel_pipeline.update_view(
&self.device, &self.device,
&mut self.encoder, &mut self.encoder,
&mut self.staging_belt, &mut self.staging_belt,
self.size,
&self.camera, &self.camera,
); );
} }
pub fn timer(&self) -> &GPUTimer {
&self.timer
}
} }

View File

@@ -1,7 +1,7 @@
use std::marker::PhantomData; use std::marker::PhantomData;
use wgpu::{util::DeviceExt, BufferAddress, BufferUsages}; use wgpu::{util::DeviceExt, BufferAddress, BufferUsages};
pub struct ArrBuf<T: bytemuck::Pod> { pub struct ArrayBuffer<T: bytemuck::Pod> {
len: usize, len: usize,
buffer: wgpu::Buffer, buffer: wgpu::Buffer,
label: String, label: String,
@@ -10,7 +10,7 @@ pub struct ArrBuf<T: bytemuck::Pod> {
moves: Vec<BufMove>, moves: Vec<BufMove>,
} }
impl<T: bytemuck::Pod> ArrBuf<T> { impl<T: bytemuck::Pod> ArrayBuffer<T> {
pub fn update( pub fn update(
&mut self, &mut self,
device: &wgpu::Device, device: &wgpu::Device,
@@ -62,6 +62,42 @@ impl<T: bytemuck::Pod> ArrBuf<T> {
resized resized
} }
pub fn add(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
data: &[T],
) {
self.update(
device,
encoder,
belt,
self.len + data.len(),
&[ArrBufUpdate {
offset: self.len,
data,
}],
);
}
pub fn set(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
offset: usize,
data: &[T],
) {
self.update(
device,
encoder,
belt,
self.len,
&[ArrBufUpdate { offset, data }],
);
}
pub fn init(device: &wgpu::Device, label: &str, usage: BufferUsages) -> Self { pub fn init(device: &wgpu::Device, label: &str, usage: BufferUsages) -> Self {
let label = &(label.to_owned() + " Buffer"); let label = &(label.to_owned() + " Buffer");
Self { Self {
@@ -116,10 +152,6 @@ impl<T: bytemuck::Pod> ArrBuf<T> {
}) })
} }
pub fn buffer(&self) -> &wgpu::Buffer {
&self.buffer
}
pub fn mov(&mut self, mov: BufMove) { pub fn mov(&mut self, mov: BufMove) {
self.moves.push(mov); self.moves.push(mov);
} }
@@ -127,6 +159,31 @@ impl<T: bytemuck::Pod> ArrBuf<T> {
pub fn len(&self) -> usize { pub fn len(&self) -> usize {
self.len self.len
} }
pub fn bind_group_layout_entry(
&self,
binding: u32,
visibility: wgpu::ShaderStages,
ty: wgpu::BufferBindingType,
) -> wgpu::BindGroupLayoutEntry {
wgpu::BindGroupLayoutEntry {
binding,
visibility,
ty: wgpu::BindingType::Buffer {
ty,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}
}
pub fn bind_group_entry(&self, binding: u32) -> wgpu::BindGroupEntry {
return wgpu::BindGroupEntry {
binding,
resource: self.buffer.as_entire_binding(),
};
}
} }
pub struct ArrBufUpdate<'a, T> { pub struct ArrBufUpdate<'a, T> {

View File

@@ -1,78 +0,0 @@
use wgpu::{BufferUsages, VertexAttribute};
use super::buf::{ArrBuf, ArrBufUpdate, BufMove};
pub struct Instances<T: bytemuck::Pod> {
buf: ArrBuf<T>,
location: u32,
attrs: Vec<VertexAttribute>,
}
impl<T: bytemuck::Pod> Instances<T> {
pub fn update(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
size: usize,
updates: &[ArrBufUpdate<T>],
) -> bool {
self.buf.update(device, encoder, belt, size, updates)
}
pub fn init(
device: &wgpu::Device,
label: &str,
location: u32,
attrs: &[wgpu::VertexAttribute],
) -> Self {
Self {
buf: ArrBuf::init(
device,
&(label.to_owned() + " Instance"),
BufferUsages::VERTEX,
),
location,
attrs: attrs.to_vec(),
}
}
pub fn init_with(
device: &wgpu::Device,
label: &str,
location: u32,
attrs: &[wgpu::VertexAttribute],
data: &[T],
) -> Self {
Self {
buf: ArrBuf::init_with(
device,
&(label.to_owned() + " Instance"),
BufferUsages::VERTEX,
data,
),
location,
attrs: attrs.to_vec(),
}
}
pub fn set_in<'a>(&'a self, render_pass: &mut wgpu::RenderPass<'a>) {
render_pass.set_vertex_buffer(self.location, self.buf.buffer().slice(..));
}
pub fn desc(&self) -> wgpu::VertexBufferLayout {
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<T>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Instance,
attributes: &self.attrs,
}
}
pub fn mov(&mut self, mov: BufMove) {
self.buf.mov(mov);
}
pub fn len(&self) -> usize {
self.buf.len()
}
}

View File

@@ -1,13 +1,9 @@
mod buf; mod array;
mod instance;
mod storage;
mod uniform; mod uniform;
mod vertex;
mod texture; mod texture;
mod timer;
pub use buf::*; pub use array::*;
pub use instance::*;
pub use storage::*;
pub use uniform::*; pub use uniform::*;
pub use vertex::*;
pub use texture::*; pub use texture::*;
pub use timer::*;

View File

@@ -1,73 +0,0 @@
use super::buf::{ArrBuf, ArrBufUpdate, BufMove};
use wgpu::BufferUsages;
pub struct Storage<T: bytemuck::Pod> {
binding: u32,
buf: ArrBuf<T>,
visibility: wgpu::ShaderStages,
}
impl<T: bytemuck::Pod> Storage<T> {
pub fn init(device: &wgpu::Device, visibility: wgpu::ShaderStages, label: &str, binding: u32) -> Self {
Self {
buf: ArrBuf::init(
device,
&(label.to_owned() + " Storage"),
BufferUsages::STORAGE,
),
visibility,
binding,
}
}
pub fn init_with(device: &wgpu::Device, visibility: wgpu::ShaderStages, label: &str, binding: u32, data: &[T]) -> Self {
Self {
buf: ArrBuf::init_with(
device,
&(label.to_owned() + " Storage"),
BufferUsages::STORAGE,
data
),
visibility,
binding,
}
}
}
impl<T: bytemuck::Pod> Storage<T> {
pub fn bind_group_layout_entry(&self) -> wgpu::BindGroupLayoutEntry {
wgpu::BindGroupLayoutEntry {
binding: self.binding,
visibility: self.visibility,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}
}
pub fn bind_group_entry(&self) -> wgpu::BindGroupEntry {
return wgpu::BindGroupEntry {
binding: self.binding,
resource: self.buf.buffer().as_entire_binding(),
};
}
pub fn update(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
size: usize,
updates: &[ArrBufUpdate<T>],
) -> bool {
self.buf.update(device, encoder, belt, size, updates)
}
pub fn mov(&mut self, mov: BufMove) {
self.buf.mov(mov);
}
pub fn len(&mut self) -> usize {
self.buf.len()
}
}

View File

@@ -1,23 +1,26 @@
pub struct DepthTexture { pub struct Texture {
texture_desc: wgpu::TextureDescriptor<'static>,
view_desc: wgpu::TextureViewDescriptor<'static>,
sampler_desc: wgpu::SamplerDescriptor<'static>,
pub texture: wgpu::Texture, pub texture: wgpu::Texture,
pub view: wgpu::TextureView, pub view: wgpu::TextureView,
pub sampler: wgpu::Sampler, pub sampler: wgpu::Sampler,
} }
impl DepthTexture { impl Texture {
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float; pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
pub fn init( pub fn init_depth(
device: &wgpu::Device, device: &wgpu::Device,
config: &wgpu::SurfaceConfiguration, config: &wgpu::SurfaceConfiguration,
label: &str, label: &'static str,
) -> Self { ) -> Self {
let size = wgpu::Extent3d { let size = wgpu::Extent3d {
width: config.width + 1, width: config.width + 1,
height: config.height + 1, height: config.height + 1,
depth_or_array_layers: 1, depth_or_array_layers: 1,
}; };
let desc = wgpu::TextureDescriptor { let texture_desc = wgpu::TextureDescriptor {
label: Some(label), label: Some(label),
size, size,
mip_level_count: 1, mip_level_count: 1,
@@ -27,97 +30,62 @@ impl DepthTexture {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING, usage: wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING,
view_formats: &[], view_formats: &[],
}; };
let texture = device.create_texture(&desc); Self::init(
device,
let view = texture.create_view(&wgpu::TextureViewDescriptor::default()); texture_desc,
let sampler = device.create_sampler(&wgpu::SamplerDescriptor { wgpu::TextureViewDescriptor::default(),
address_mode_u: wgpu::AddressMode::ClampToEdge, wgpu::SamplerDescriptor {
address_mode_v: wgpu::AddressMode::ClampToEdge, address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge, address_mode_v: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear, address_mode_w: wgpu::AddressMode::ClampToEdge,
min_filter: wgpu::FilterMode::Linear, mag_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest, min_filter: wgpu::FilterMode::Linear,
compare: Some(wgpu::CompareFunction::LessEqual), mipmap_filter: wgpu::FilterMode::Nearest,
lod_min_clamp: 0.0, compare: Some(wgpu::CompareFunction::LessEqual),
lod_max_clamp: 100.0, lod_min_clamp: 0.0,
..Default::default() lod_max_clamp: 100.0,
}); ..Default::default()
},
)
}
pub fn init(
device: &wgpu::Device,
texture_desc: wgpu::TextureDescriptor<'static>,
view_desc: wgpu::TextureViewDescriptor<'static>,
sampler_desc: wgpu::SamplerDescriptor<'static>,
) -> Self {
let texture = device.create_texture(&texture_desc);
let view = texture.create_view(&view_desc);
let sampler = device.create_sampler(&sampler_desc);
Self { Self {
texture_desc,
view_desc,
sampler_desc,
texture, texture,
view, view,
sampler, sampler,
} }
} }
}
pub struct StorageTexture { pub fn resize(&mut self, device: &wgpu::Device, size: wgpu::Extent3d) {
binding: u32, self.texture_desc.size = size;
visibility: wgpu::ShaderStages, self.texture = device.create_texture(&self.texture_desc);
pub buf: wgpu::Texture, self.view = self.texture.create_view(&self.view_desc);
pub view: wgpu::TextureView, }
pub sampler: wgpu::Sampler, pub fn view_bind_group_entry(&self, binding: u32) -> wgpu::BindGroupEntry {
} wgpu::BindGroupEntry {
impl StorageTexture {
pub const FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rgba8Unorm;
pub fn init(
device: &wgpu::Device,
size: wgpu::Extent3d,
label: &str,
visibility: wgpu::ShaderStages,
binding: u32,
) -> Self {
let desc = wgpu::TextureDescriptor {
label: Some(label),
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::FORMAT,
usage: wgpu::TextureUsages::STORAGE_BINDING | wgpu::TextureUsages::TEXTURE_BINDING,
view_formats: &[],
};
let texture = device.create_texture(&desc);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
compare: None,
lod_min_clamp: 0.0,
lod_max_clamp: 100.0,
..Default::default()
});
Self {
visibility,
binding, binding,
buf: texture,
view,
sampler,
}
}
pub fn bind_group_layout_entry(&self) -> wgpu::BindGroupLayoutEntry {
wgpu::BindGroupLayoutEntry {
binding: self.binding,
visibility: self.visibility,
ty: wgpu::BindingType::StorageTexture {
access: wgpu::StorageTextureAccess::WriteOnly,
format: Self::FORMAT,
view_dimension: wgpu::TextureViewDimension::D2,
},
count: None,
}
}
pub fn bind_group_entry(&self) -> wgpu::BindGroupEntry {
return wgpu::BindGroupEntry {
binding: self.binding,
resource: wgpu::BindingResource::TextureView(&self.view), resource: wgpu::BindingResource::TextureView(&self.view),
}; }
}
pub fn sampler_bind_group_entry(&self, binding: u32) -> wgpu::BindGroupEntry {
wgpu::BindGroupEntry {
binding,
resource: wgpu::BindingResource::Sampler(&self.sampler),
}
}
pub fn format(&self) -> wgpu::TextureFormat {
self.texture_desc.format
} }
} }

View File

@@ -0,0 +1,85 @@
use std::time::Duration;
pub struct GPUTimer {
resolve_buf: wgpu::Buffer,
map_buf: wgpu::Buffer,
query_set: wgpu::QuerySet,
timestamps: Vec<u64>,
}
impl GPUTimer {
pub fn new(device: &wgpu::Device, count: u32) -> Self {
let count = count * 2;
let timestamp_set = device.create_query_set(&wgpu::QuerySetDescriptor {
count,
label: Some("voxel timestamp"),
ty: wgpu::QueryType::Timestamp,
});
let timestamp_resolve_buf = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("voxel timestamp"),
mapped_at_creation: false,
size: 8 * count as u64,
usage: wgpu::BufferUsages::QUERY_RESOLVE | wgpu::BufferUsages::COPY_SRC,
});
let timestamp_mapped_buf = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("voxel timestamp"),
mapped_at_creation: false,
size: 8 * count as u64,
usage: wgpu::BufferUsages::COPY_DST | wgpu::BufferUsages::MAP_READ,
});
Self {
query_set: timestamp_set,
resolve_buf: timestamp_resolve_buf,
map_buf: timestamp_mapped_buf,
timestamps: vec![0; count as usize],
}
}
pub fn resolve(&self, encoder: &mut wgpu::CommandEncoder) {
encoder.resolve_query_set(&self.query_set, 0..2, &self.resolve_buf, 0);
encoder.copy_buffer_to_buffer(&self.resolve_buf, 0, &self.map_buf, 0, self.map_buf.size());
}
pub fn duration(&self, i: u32) -> Duration {
let i = i as usize * 2;
Duration::from_nanos(self.timestamps[i + 1] - self.timestamps[i])
}
pub fn finish(&mut self, device: &wgpu::Device) {
let (s, r) = std::sync::mpsc::channel();
self.map_buf
.slice(..)
.map_async(wgpu::MapMode::Read, move |v| {
s.send(v).expect("what");
});
device.poll(wgpu::Maintain::wait()).panic_on_timeout();
if let Ok(Ok(())) = r.recv() {
let data = self.map_buf.slice(..).get_mapped_range();
self.timestamps.copy_from_slice(bytemuck::cast_slice(&data));
drop(data);
self.map_buf.unmap();
}
}
#[allow(dead_code)]
pub fn start(&self, encoder: &mut wgpu::CommandEncoder, i: u32) {
encoder.write_timestamp(&self.query_set, i * 2);
}
#[allow(dead_code)]
pub fn stop(&self, encoder: &mut wgpu::CommandEncoder, i: u32) {
encoder.write_timestamp(&self.query_set, i * 2 + 1);
}
#[allow(dead_code)]
pub fn start_compute(&self, pass: &mut wgpu::ComputePass, i: u32) {
pass.write_timestamp(&self.query_set, i * 2);
}
#[allow(dead_code)]
pub fn stop_compute(&self, pass: &mut wgpu::ComputePass, i: u32) {
pass.write_timestamp(&self.query_set, i * 2 + 1);
}
}

View File

@@ -1,86 +0,0 @@
use wgpu::{BufferUsages, VertexAttribute};
use super::buf::{ArrBuf, ArrBufUpdate, BufMove};
pub struct Vertices<T: bytemuck::Pod> {
buf: ArrBuf<T>,
location: u32,
attrs: [VertexAttribute; 1],
}
impl<T: bytemuck::Pod> Vertices<T> {
pub fn update(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
size: usize,
updates: &[ArrBufUpdate<T>],
) -> bool {
self.buf.update(device, encoder, belt, size, updates)
}
pub fn init(
device: &wgpu::Device,
label: &str,
location: u32,
format: wgpu::VertexFormat,
) -> Self {
Self {
buf: ArrBuf::init(
device,
&(label.to_owned() + " Instance"),
BufferUsages::VERTEX,
),
location,
attrs: [wgpu::VertexAttribute {
format,
offset: 0,
shader_location: location,
}],
}
}
pub fn init_with(
device: &wgpu::Device,
label: &str,
location: u32,
format: wgpu::VertexFormat,
data: &[T],
) -> Self {
Self {
buf: ArrBuf::init_with(
device,
&(label.to_owned() + " Instance"),
BufferUsages::VERTEX,
data,
),
location,
attrs: [wgpu::VertexAttribute {
format,
offset: 0,
shader_location: location,
}],
}
}
pub fn set_in<'a>(&'a self, render_pass: &mut wgpu::RenderPass<'a>) {
render_pass.set_vertex_buffer(self.location, self.buf.buffer().slice(..));
}
pub fn desc(&self) -> wgpu::VertexBufferLayout {
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<T>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &self.attrs,
}
}
pub fn mov(&mut self, mov: BufMove) {
self.buf.mov(mov);
}
pub fn len(&self) -> usize {
self.buf.len()
}
}

View File

@@ -0,0 +1,7 @@
#[repr(C, align(16))]
#[derive(Debug, Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct Chunk {
pub offset: u32,
}
unsafe impl bytemuck::Pod for Chunk {}

View File

@@ -1,12 +0,0 @@
use nalgebra::{Projective3, Vector3};
#[repr(C, align(16))]
#[derive(Debug, Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct VoxelGroup {
pub transform: Projective3<f32>,
pub transform_inv: Projective3<f32>,
pub scale: u32,
pub offset: u32,
}
unsafe impl bytemuck::Pod for VoxelGroup {}

View File

@@ -1,18 +1,18 @@
use wgpu::TextureFormat; use wgpu::{BufferUsages, ShaderStages, TextureFormat};
use super::{group::VoxelGroup, light::GlobalLight, view::View}; use super::{chunk::Chunk, light::GlobalLight, view::View};
use crate::{ use crate::{
client::render::util::{Storage, StorageTexture, Uniform}, client::render::util::{ArrayBuffer, Texture, Uniform},
util::oct_tree::OctNode, util::oct_tree::OctNode,
}; };
use nalgebra::Vector3; use nalgebra::Vector3;
pub struct Layout { pub struct Layout {
pub texture: StorageTexture,
pub view: Uniform<View>, pub view: Uniform<View>,
pub voxel_groups: Storage<VoxelGroup>, pub chunks: ArrayBuffer<Chunk>,
pub voxels: Storage<OctNode>, pub voxel_data: ArrayBuffer<OctNode>,
pub global_lights: Storage<GlobalLight>, pub global_lights: ArrayBuffer<GlobalLight>,
pub texture: Texture,
render_bind_layout: wgpu::BindGroupLayout, render_bind_layout: wgpu::BindGroupLayout,
compute_bind_layout: wgpu::BindGroupLayout, compute_bind_layout: wgpu::BindGroupLayout,
render_pipeline_layout: wgpu::PipelineLayout, render_pipeline_layout: wgpu::PipelineLayout,
@@ -23,27 +23,40 @@ pub struct Layout {
impl Layout { impl Layout {
pub fn init(device: &wgpu::Device, config: &wgpu::SurfaceConfiguration) -> Self { pub fn init(device: &wgpu::Device, config: &wgpu::SurfaceConfiguration) -> Self {
let view = Uniform::init(device, "view", 0); let view = Uniform::init(device, "view", 0);
let voxels = Storage::init(device, wgpu::ShaderStages::COMPUTE, "voxels", 1); let chunks = ArrayBuffer::init(device, "chunks", BufferUsages::STORAGE);
let voxel_groups = Storage::init(device, wgpu::ShaderStages::COMPUTE, "voxel groups", 2); let voxel_data = ArrayBuffer::init_with(
let global_lights = Storage::init_with( device,
"voxel data",
BufferUsages::STORAGE,
&[OctNode::new_leaf(0)],
);
let global_lights = ArrayBuffer::init_with(
device, device,
wgpu::ShaderStages::COMPUTE,
"global lights", "global lights",
3, BufferUsages::STORAGE,
&[GlobalLight { &[GlobalLight {
direction: Vector3::new(-1.0, -2.3, 2.0).normalize(), direction: Vector3::new(-1.0, -2.3, 2.0).normalize(),
}], }],
); );
let texture = StorageTexture::init( let desc = wgpu::TextureDescriptor {
device, label: Some("compute output"),
wgpu::Extent3d { size: wgpu::Extent3d {
width: config.width, width: config.width,
height: config.height, height: config.height,
depth_or_array_layers: 1, depth_or_array_layers: 1,
}, },
"compute output", mip_level_count: 1,
wgpu::ShaderStages::COMPUTE | wgpu::ShaderStages::FRAGMENT, sample_count: 1,
4, dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8Unorm,
usage: wgpu::TextureUsages::STORAGE_BINDING | wgpu::TextureUsages::TEXTURE_BINDING,
view_formats: &[],
};
let texture = Texture::init(
device,
desc,
wgpu::TextureViewDescriptor::default(),
wgpu::SamplerDescriptor::default(),
); );
let render_bind_layout = let render_bind_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
@@ -73,10 +86,31 @@ impl Layout {
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[ entries: &[
view.bind_group_layout_entry(), view.bind_group_layout_entry(),
voxels.bind_group_layout_entry(), chunks.bind_group_layout_entry(
voxel_groups.bind_group_layout_entry(), 1,
global_lights.bind_group_layout_entry(), ShaderStages::COMPUTE,
texture.bind_group_layout_entry(), wgpu::BufferBindingType::Storage { read_only: true },
),
voxel_data.bind_group_layout_entry(
2,
ShaderStages::COMPUTE,
wgpu::BufferBindingType::Storage { read_only: true },
),
global_lights.bind_group_layout_entry(
3,
ShaderStages::COMPUTE,
wgpu::BufferBindingType::Storage { read_only: true },
),
wgpu::BindGroupLayoutEntry {
binding: 4,
visibility: ShaderStages::COMPUTE,
ty: wgpu::BindingType::StorageTexture {
access: wgpu::StorageTextureAccess::WriteOnly,
format: texture.format(),
view_dimension: wgpu::TextureViewDimension::D2,
},
count: None,
},
], ],
label: Some("voxel compute"), label: Some("voxel compute"),
}); });
@@ -94,8 +128,8 @@ impl Layout {
}); });
Self { Self {
view, view,
voxels, voxel_data,
voxel_groups, chunks,
global_lights, global_lights,
texture, texture,
render_bind_layout, render_bind_layout,
@@ -110,16 +144,10 @@ impl Layout {
device.create_bind_group(&wgpu::BindGroupDescriptor { device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.render_bind_layout, layout: &self.render_bind_layout,
entries: &[ entries: &[
wgpu::BindGroupEntry { self.texture.view_bind_group_entry(0),
binding: 0, self.texture.sampler_bind_group_entry(1),
resource: wgpu::BindingResource::TextureView(&self.texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&self.texture.sampler),
},
], ],
label: Some("tile_bind_group"), label: Some("voxel render"),
}) })
} }
@@ -128,10 +156,10 @@ impl Layout {
layout: &self.compute_bind_layout, layout: &self.compute_bind_layout,
entries: &[ entries: &[
self.view.bind_group_entry(), self.view.bind_group_entry(),
self.voxels.bind_group_entry(), self.chunks.bind_group_entry(1),
self.voxel_groups.bind_group_entry(), self.voxel_data.bind_group_entry(2),
self.global_lights.bind_group_entry(), self.global_lights.bind_group_entry(3),
self.texture.bind_group_entry(), self.texture.view_bind_group_entry(4),
], ],
label: Some("voxel compute"), label: Some("voxel compute"),
}) })

View File

@@ -1,28 +1,25 @@
mod chunk;
mod color; mod color;
mod grid; mod grid;
mod group;
mod layout; mod layout;
mod light; mod light;
mod view; mod view;
use super::super::UpdateGridTransform; use super::super::UpdateGridTransform;
use crate::{ use crate::client::{
client::{ camera::Camera,
camera::Camera, render::{AddChunk, CreateVoxelGrid},
render::{
util::{ArrBufUpdate, StorageTexture},
AddChunk, CreateVoxelGrid,
},
},
common::component::chunk,
}; };
use bevy_ecs::entity::Entity; use bevy_ecs::entity::Entity;
pub use color::*; pub use color::*;
use layout::Layout; use layout::Layout;
use nalgebra::{Projective3, Transform3, Translation3, Vector2, Vector3}; use nalgebra::{Transform3, Translation3, Vector2};
use std::{collections::HashMap, ops::Deref}; use std::{
collections::HashMap,
sync::{Arc, Mutex},
};
use wgpu::include_wgsl; use wgpu::include_wgsl;
use {group::VoxelGroup, view::View}; use {chunk::Chunk, view::View};
pub struct VoxelPipeline { pub struct VoxelPipeline {
layout: Layout, layout: Layout,
@@ -30,7 +27,7 @@ pub struct VoxelPipeline {
compute_bind_group: wgpu::BindGroup, compute_bind_group: wgpu::BindGroup,
render_pipeline: wgpu::RenderPipeline, render_pipeline: wgpu::RenderPipeline,
render_bind_group: wgpu::BindGroup, render_bind_group: wgpu::BindGroup,
id_map: HashMap<Entity, (usize, VoxelGroup)>, id_map: HashMap<Entity, (usize, Chunk)>,
} }
const RENDER_SHADER: wgpu::ShaderModuleDescriptor<'_> = include_wgsl!("shader/render.wgsl"); const RENDER_SHADER: wgpu::ShaderModuleDescriptor<'_> = include_wgsl!("shader/render.wgsl");
@@ -82,7 +79,8 @@ impl VoxelPipeline {
pub fn update_shader(&mut self, device: &wgpu::Device) { pub fn update_shader(&mut self, device: &wgpu::Device) {
let Ok(shader) = std::fs::read_to_string( let Ok(shader) = std::fs::read_to_string(
env!("CARGO_MANIFEST_DIR").to_owned() + "/src/client/render/voxel/ray_oct/shader/compute.wgsl", env!("CARGO_MANIFEST_DIR").to_owned()
+ "/src/client/render/voxel/ray_oct/shader/compute.wgsl",
) else { ) else {
println!("Failed to reload shader!"); println!("Failed to reload shader!");
return; return;
@@ -110,49 +108,27 @@ impl VoxelPipeline {
belt: &mut wgpu::util::StagingBelt, belt: &mut wgpu::util::StagingBelt,
AddChunk { id, pos, tree, .. }: AddChunk, AddChunk { id, pos, tree, .. }: AddChunk,
) { ) {
let offset = self.layout.voxels.len(); let offset = self.layout.voxel_data.len() as u32;
let data = tree.raw();
let updates = [ArrBufUpdate { offset, data }];
let size = offset + data.len();
self.layout self.layout
.voxels .voxel_data
.update(device, encoder, belt, size, &updates); .add(device, encoder, belt, tree.raw());
let proj = Projective3::identity() let chunk = Chunk { offset };
* Translation3::from((pos.deref() * chunk::SIDE_LENGTH as i32).cast()) let i = self.layout.chunks.len();
* Translation3::from(-chunk::DIMENSIONS.cast() / 2.0); self.layout.chunks.add(device, encoder, belt, &[chunk]);
let group = VoxelGroup {
transform: proj,
transform_inv: proj.inverse(),
scale: chunk::SCALE,
offset: offset as u32,
};
let updates = [ArrBufUpdate {
offset: self.layout.voxel_groups.len(),
data: &[group],
}];
let i = self.layout.voxel_groups.len();
let size = i + 1;
self.layout
.voxel_groups
.update(device, encoder, belt, size, &updates);
self.id_map.insert(id, (i, group)); self.id_map.insert(id, (i, chunk));
self.compute_bind_group = self.layout.compute_bind_group(device); self.compute_bind_group = self.layout.compute_bind_group(device);
} }
pub fn resize(&mut self, device: &wgpu::Device, size: Vector2<u32>) { pub fn resize(&mut self, device: &wgpu::Device, size: Vector2<u32>) {
self.layout.texture = StorageTexture::init( self.layout.texture.resize(
device, device,
wgpu::Extent3d { wgpu::Extent3d {
width: size.x, width: size.x,
height: size.y, height: size.y,
depth_or_array_layers: 1, depth_or_array_layers: 1,
}, },
"idk man im tired",
wgpu::ShaderStages::COMPUTE | wgpu::ShaderStages::FRAGMENT,
4,
); );
self.compute_bind_group = self.layout.compute_bind_group(device); self.compute_bind_group = self.layout.compute_bind_group(device);
self.render_bind_group = self.layout.render_bind_group(device); self.render_bind_group = self.layout.render_bind_group(device);
@@ -166,21 +142,7 @@ impl VoxelPipeline {
update: UpdateGridTransform, update: UpdateGridTransform,
) { ) {
if let Some((i, group)) = self.id_map.get_mut(&update.id) { if let Some((i, group)) = self.id_map.get_mut(&update.id) {
let offset = Vector3::from_element(-(2u32.pow(group.scale) as f32) / 2.0); self.layout.chunks.set(device, encoder, belt, *i, &[*group]);
let proj = Projective3::identity()
* Translation3::from(update.pos)
* update.orientation
* Translation3::from(offset);
group.transform = proj;
group.transform_inv = proj.inverse();
let updates = [ArrBufUpdate {
offset: *i,
data: &[*group],
}];
let size = self.layout.voxel_groups.len();
self.layout
.voxel_groups
.update(device, encoder, belt, size, &updates);
} }
} }
@@ -189,7 +151,6 @@ impl VoxelPipeline {
device: &wgpu::Device, device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder, encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt, belt: &mut wgpu::util::StagingBelt,
size: Vector2<u32>,
camera: &Camera, camera: &Camera,
) { ) {
let transform = let transform =
@@ -197,6 +158,7 @@ impl VoxelPipeline {
let data = View { let data = View {
zoom: camera.scale, zoom: camera.scale,
transform, transform,
..Default::default()
}; };
self.layout.view.update(device, encoder, belt, data); self.layout.view.update(device, encoder, belt, data);
} }
@@ -212,7 +174,7 @@ impl VoxelPipeline {
pub fn compute(&self, pass: &mut wgpu::ComputePass) { pub fn compute(&self, pass: &mut wgpu::ComputePass) {
pass.set_pipeline(&self.compute_pipeline); pass.set_pipeline(&self.compute_pipeline);
pass.set_bind_group(0, &self.compute_bind_group, &[]); pass.set_bind_group(0, &self.compute_bind_group, &[]);
let buf = &self.layout.texture.buf; let buf = &self.layout.texture.texture;
let x = (buf.width() - 1) / Self::WORKGROUP_SIZE + 1; let x = (buf.width() - 1) / Self::WORKGROUP_SIZE + 1;
let y = (buf.height() - 1) / Self::WORKGROUP_SIZE + 1; let y = (buf.height() - 1) / Self::WORKGROUP_SIZE + 1;
pass.dispatch_workgroups(x, y, 1); pass.dispatch_workgroups(x, y, 1);

View File

@@ -1,9 +1,9 @@
@group(0) @binding(0) @group(0) @binding(0)
var<uniform> view: View; var<uniform> view: View;
@group(0) @binding(1) @group(0) @binding(1)
var<storage, read> voxels: array<u32>; var<storage, read> chunks: array<Chunk>;
@group(0) @binding(2) @group(0) @binding(2)
var<storage, read> voxel_groups: array<VoxelGroup>; var<storage, read> voxel_data: array<u32>;
@group(0) @binding(3) @group(0) @binding(3)
var<storage, read> global_lights: array<GlobalLight>; var<storage, read> global_lights: array<GlobalLight>;
@group(0) @binding(4) @group(0) @binding(4)
@@ -16,12 +16,11 @@ struct GlobalLight {
struct View { struct View {
transform: mat4x4<f32>, transform: mat4x4<f32>,
zoom: f32, zoom: f32,
chunk_scale: u32,
chunk_dist: u32,
}; };
struct VoxelGroup { struct Chunk {
transform: mat4x4<f32>,
transform_inv: mat4x4<f32>,
scale: u32,
offset: u32, offset: u32,
}; };
@@ -38,7 +37,8 @@ fn main(@builtin(global_invocation_id) cell: vec3<u32>) {
let pixel_pos = vec2<f32>( let pixel_pos = vec2<f32>(
(vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect) (vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect)
); );
let pos = view.transform * vec4<f32>(pixel_pos, 1.0, 1.0); let offset = vec3<f32>(f32(1u << (view.chunk_scale - 1)));
let pos = view.transform * vec4<f32>(pixel_pos, 1.0, 1.0) + vec4<f32>(offset, 0.0);
let dir = view.transform * vec4<f32>(normalize(vec3<f32>(pixel_pos, view.zoom)), 0.0); let dir = view.transform * vec4<f32>(normalize(vec3<f32>(pixel_pos, view.zoom)), 0.0);
var color = trace_full(pos, dir); var color = trace_full(pos, dir);
@@ -53,6 +53,7 @@ fn main(@builtin(global_invocation_id) cell: vec3<u32>) {
const LEAF_BIT = 1u << 31u; const LEAF_BIT = 1u << 31u;
const LEAF_MASK = ~LEAF_BIT; const LEAF_MASK = ~LEAF_BIT;
const MAX_HITS = 10;
const ZERO3F = vec3<f32>(0.0); const ZERO3F = vec3<f32>(0.0);
const ZERO2F = vec2<f32>(0.0); const ZERO2F = vec2<f32>(0.0);
@@ -62,126 +63,122 @@ const MAX_ITERS = 10000;
// NOTE: CANNOT GO HIGHER THAN 23 due to how floating point // NOTE: CANNOT GO HIGHER THAN 23 due to how floating point
// numbers are stored and the bit manipulation used // numbers are stored and the bit manipulation used
const MAX_SCALE: u32 = 13; const MAX_SCALE: u32 = 13;
const AMBIENT: f32 = 0.2;
const SPECULAR: f32 = 0.5;
fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> { fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0; if arrayLength(&voxel_data) == 1 {
let group = voxel_groups[gi];
if group.scale == 0 {
return vec4<f32>(0.0); return vec4<f32>(0.0);
} }
let dimensions = vec3<u32>(1u << group.scale); let gi = 0;
let chunk = chunks[gi];
let side_len = 1u << view.chunk_scale;
let dimensions = vec3<u32>(side_len);
let dim_f = vec3<f32>(dimensions); let dim_f = vec3<f32>(dimensions);
let dim_i = vec3<i32>(dimensions);
// transform so that group is at 0,0 let pos_start = pos_view.xyz;
let pos_start = (group.transform_inv * pos_view).xyz; var dir = dir_view.xyz;
var dir = (group.transform_inv * dir_view).xyz; if dir.x == 0 { dir.x = EPSILON; }
if dir.x == 0 {dir.x = EPSILON;} if dir.y == 0 { dir.y = EPSILON; }
if dir.y == 0 {dir.y = EPSILON;} if dir.z == 0 { dir.z = EPSILON; }
if dir.z == 0 {dir.z = EPSILON;}
let dir_if = sign(dir); let dir_if = sign(dir);
let dir_uf = max(dir_if, vec3<f32>(0.0)); let dir_uf = max(dir_if, vec3<f32>(0.0));
// find where ray intersects with group
// closest (min) and furthest (max) corners of cube relative to direction
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
let pos_max = dir_uf * dim_f;
// time of intersection; x = td + p, solve for t
let t_min = (pos_min - pos_start) / dir;
let t_max = (pos_max - pos_start) / dir;
// time of entrance and exit of the cube
let t_start = max(max(t_min.x, t_min.y), t_min.z);
let t_end = min(min(t_max.x, t_max.y), t_max.z);
if t_end < t_start { return vec4<f32>(0.0); }
// axis of intersection
let axis = select(select(2u, 1u, t_start == t_min.y), 0u, t_start == t_min.x);
// time to move entire side length in each direction
let inc_t = abs(1.0 / dir) * f32(side_len);
let t = max(0.0, t_start);
let inv_dir_bits = 7 - vec_to_dir(vec3<u32>(dir_uf));
let corner_adj = t_min - inc_t;
// calculate normals // calculate normals
var normals = mat3x3<f32>( var normals = mat3x3<f32>(
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz, vec3<f32>(dir_if.x, 0.0, 0.0),
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz, vec3<f32>(0.0, dir_if.y, 0.0),
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz, vec3<f32>(0.0, 0.0, dir_if.z),
); );
var axis = 0u;
// find where ray intersects with group let result = cast_ray(chunk.offset, t, axis, inv_dir_bits, inc_t, corner_adj);
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f; return shade_ray(result, pos_start, dir_view.xyz, t_end, normals);
// time of intersection; x = td + p, solve for t }
var t_min = (pos_min - pos_start) / dir;
if outside3f(pos_start, ZERO3F, dim_f) {
// points of intersection
let px = pos_start + t_min.x * dir;
let py = pos_start + t_min.y * dir;
let pz = pos_start + t_min.z * dir;
// check if point is in bounds fn shade_ray(result: RayResult, pos_start: vec3<f32>, dir: vec3<f32>, t_end: f32, normals: mat3x3<f32>) -> vec4<f32> {
let hit = vec3<bool>( var hits = result.hits;
inside2f(px.yz, ZERO2F, dim_f.yz),
inside2f(py.xz, ZERO2F, dim_f.xz),
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_min > ZERO3F);
if !any(hit) {
return vec4<f32>(0.0);
}
axis = select(select(2u, 1u, hit.y), 0u, hit.x);
}
let t_mult = f32(1u << (MAX_SCALE - group.scale));
t_min *= t_mult;
// time to move 1 unit in each direction
let full = f32(1u << MAX_SCALE);
let inc_t = abs(1.0 / dir) * full;
let t_offset = max(max(t_min.x, t_min.y), t_min.z);
var t = max(0.0, t_offset);
let dir_i = vec3<i32>(dir_if);
let dir_u = vec3<u32>(dir_uf);
let dir_bits = vec_to_dir(dir_u);
let inv_dir_bits = 7 - dir_bits;
var node_start = 1u;
var scale = MAX_SCALE - 1;
var scale_exp2 = 0.5;
var color = vec4<f32>(0.0); var color = vec4<f32>(0.0);
var parents = array<u32, MAX_SCALE>(); for (var i = 0u; i < result.len; i += 1u) {
var prev = LEAF_BIT; let hit = hits[i];
var old_t = t / t_mult; let id = hit.id;
let t = hit.t;
let axis = hit.axis;
var child = 0u; let next_t = select(hits[i + 1].t, t_end, i == result.len - 1);
var pos = pos_start + dir * t;
pos[axis] = round(pos[axis]) - f32(dir[axis] < 0.0);
let normal = select(select(normals[0], normals[1], axis == 1), normals[2], axis == 2);
let vcolor = shade(id, pos, normal, dir, next_t - t);
color += vcolor * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
return color;
}
struct RayHit {
t: f32,
id: u32,
axis: u32,
}
struct RayResult {
hits: array<RayHit, MAX_HITS>,
len: u32,
}
fn cast_ray(
data_offset: u32, t_start: f32, axis_start: u32,
inv_dir_bits: u32, inc_t: vec3<f32>, corner_adj: vec3<f32>
) -> RayResult {
var hits = array<RayHit, MAX_HITS>();
var depth = 0u;
var min_alpha = 0.0;
var t = t_start;
var axis = axis_start;
var node_start = 0u;
var scale = MAX_SCALE;
var scale_exp2 = 1.0;
var parents = array<u32, MAX_SCALE>();
var child = inv_dir_bits;
var vox_pos = vec3<f32>(1.0); var vox_pos = vec3<f32>(1.0);
let t_center = t_min + scale_exp2 * inc_t; var prev = 0u;
if t > t_center.x { vox_pos.x = 1.5; child |= 4u; }
if t > t_center.y { vox_pos.y = 1.5; child |= 2u; }
if t > t_center.z { vox_pos.z = 1.5; child |= 1u; }
let min_adj = t_min - inc_t;
var iters = 0; var iters = 0;
loop { loop {
if iters == MAX_ITERS { if iters == MAX_ITERS { break; }
return vec4<f32>(1.0, 0.0, 1.0, 1.0);
}
iters += 1; iters += 1;
let t_corner = vox_pos * inc_t + min_adj; let t_corner = vox_pos * inc_t + corner_adj;
let node = voxels[group.offset + node_start + (child ^ inv_dir_bits)]; let node = voxel_data[data_offset + node_start + (child ^ inv_dir_bits)];
if node >= LEAF_BIT { if node >= LEAF_BIT {
// ignore consecutive identical leaves
if node != prev { if node != prev {
if node != LEAF_BIT { let id = node & LEAF_MASK;
let real_t = t / t_mult; hits[depth] = RayHit(t, id, axis);
let dist = real_t - old_t; min_alpha += min_alpha(id) * (1.0 - min_alpha);
old_t = real_t; depth += 1u;
let filt = min(dist / 64.0, 1.0);
if prev == LEAF_BIT + 3 {
color.a += filt * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
var pos = (pos_view + dir_view * real_t).xyz;
pos[axis] = round(pos[axis]) - (1.0 - dir_uf[axis]);
let vcolor = get_color(node & LEAF_MASK, pos);
var normal = normals[axis];
let light_color = vec3<f32>(1.0);
let light_dir = global_lights[0].dir;
let diffuse = max(dot(light_dir, normal), 0.0) * light_color;
let ambient = AMBIENT * light_color;
let spec_val = pow(max(dot(dir_view.xyz, reflect(-light_dir, normal)), 0.0), 32.0) * SPECULAR;
let specular = spec_val * light_color;
let new_color = (ambient + diffuse + specular) * vcolor.xyz;
let new_a = min(vcolor.a + spec_val, 1.0);
color += vec4<f32>(new_color.xyz * new_a, new_a) * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
prev = node; prev = node;
if depth == 10 || min_alpha >= FULL_ALPHA { break; }
} }
// move to next time point and determine which axis to move along // move to next time point and determine which axis to move along
@@ -226,10 +223,15 @@ fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
node_start = node; node_start = node;
} }
} }
// let fog = min(t / t_mult / 1000.0, 1.0); return RayResult(hits, depth);
// return vec4<f32>(color.xyz * (1.0 - fog) + vec3<f32>(fog), color.a * (1.0 - fog) + fog); }
// return vec4<f32>(f32(iters) / f32(MAX_ITERS), 0.0, 0.0, 1.0);
return color; fn trace_chunk(
offset: u32,
inv_dir_bits: u32,
t: f32, t_mult: f32, inc_t: vec3<f32>,
min_adj: vec3<f32>
) {
} }
fn dir_to_vec(bits: u32) -> vec3<u32> { fn dir_to_vec(bits: u32) -> vec3<u32> {
@@ -240,29 +242,53 @@ fn vec_to_dir(vec: vec3<u32>) -> u32 {
return vec.x * 4 + vec.y * 2 + vec.z * 1; return vec.x * 4 + vec.y * 2 + vec.z * 1;
} }
fn get_color(id: u32, pos: vec3<f32>) -> vec4<f32> { fn min_alpha(id: u32) -> f32 {
switch id {
case 0u: {return 0.0;}
case 3u: {return 0.5;}
default: {return 1.0;}
}
}
const AMBIENT: f32 = 0.2;
const SPECULAR: f32 = 0.5;
// returns premultiplied
fn shade(id: u32, pos: vec3<f32>, normal: vec3<f32>, dir_view: vec3<f32>, dist: f32) -> vec4<f32> {
var color = vec4<f32>(0.0);
if id == 0 {
return color;
}
let random = random(floor(pos)); let random = random(floor(pos));
let random2 = random(floor(pos) + vec3<f32>(0.0001)); let random2 = random(floor(pos) + vec3<f32>(0.0001));
switch id { switch id {
case 0u: { case 0u: {
return vec4<f32>(0.0); color = vec4<f32>(0.0);
} }
case 1u: { case 1u: {
let color = vec3<f32>(0.5, 0.5, 0.5 + random * 0.2) * (random2 * 0.4 + 0.8); color = vec4<f32>(vec3<f32>(0.5, 0.5, 0.5 + random * 0.2) * (random2 * 0.4 + 0.8), 1.0);
return vec4<f32>(color, 1.0);
} }
case 2u: { case 2u: {
let color = vec3<f32>(0.4 + random * 0.2, 0.9, 0.4 + random * 0.2) * (random2 * 0.2 + 0.9); color = vec4<f32>(vec3<f32>(0.4 + random * 0.2, 0.9, 0.4 + random * 0.2) * (random2 * 0.2 + 0.9), 1.0);
return vec4<f32>(color, 1.0);
} }
case 3u: { case 3u: {
let color = vec3<f32>(0.5, 0.5, 1.0) * (random2 * 0.2 + 0.8); let fog = min(dist / 64.0, 1.0);
return vec4<f32>(color, 0.5); let a = 0.5;
} let rgb = vec3<f32>(0.5, 0.5, 1.0) * (random2 * 0.2 + 0.8);
default: { color = vec4<f32>(rgb * (1.0 - fog * a), a + fog * (1.0 - a));
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
} }
default: {}
} }
let light_color = vec3<f32>(1.0);
let light_dir = global_lights[0].dir;
let diffuse = max(dot(light_dir, normal), 0.0) * light_color;
let ambient = AMBIENT * light_color;
let spec_val = pow(max(dot(dir_view.xyz, reflect(-light_dir, normal)), 0.0), 32.0) * SPECULAR;
let specular = spec_val * light_color;
let new_color = (ambient + diffuse + specular) * color.xyz;
let new_a = min(color.a + spec_val, 1.0);
return vec4<f32>(new_color * new_a, new_a);
} }
fn random(pos: vec3<f32>) -> f32 { fn random(pos: vec3<f32>) -> f32 {

View File

@@ -1,419 +0,0 @@
@group(0) @binding(0)
var<uniform> view: View;
@group(0) @binding(1)
var<storage, read> voxels: array<u32>;
@group(0) @binding(2)
var<storage, read> voxel_groups: array<VoxelGroup>;
@group(0) @binding(3)
var<storage, read> global_lights: array<GlobalLight>;
@group(0) @binding(4)
var output: texture_storage_2d<rgba8unorm, write>;
struct GlobalLight {
dir: vec3<f32>,
};
struct View {
transform: mat4x4<f32>,
zoom: f32,
};
struct VoxelGroup {
transform: mat4x4<f32>,
transform_inv: mat4x4<f32>,
scale: u32,
offset: u32,
};
@compute
@workgroup_size(8, 8, 1)
fn main(@builtin(global_invocation_id) cell: vec3<u32>) {
let view_dim = textureDimensions(output);
// get position of the pixel; eye at origin, pixel on plane z = 1
if cell.x >= view_dim.x || cell.y >= view_dim.y {
return;
}
let view_dim_f = vec2<f32>(view_dim);
let aspect = view_dim_f.y / view_dim_f.x;
let pixel_pos = vec3<f32>(
(vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect),
view.zoom
);
let pos = view.transform * vec4<f32>(pixel_pos, 1.0);
let dir = view.transform * vec4<f32>(normalize(pixel_pos), 0.0);
var color = trace_full(pos, dir);
let light_mult = clamp((-dot(dir.xyz, global_lights[0].dir) - 0.99) * 200.0, 0.0, 1.0);
let sun_color = light_mult * vec3<f32>(1.0, 1.0, 1.0);
let sky_bg = vec3<f32>(0.3, 0.6, 1.0);
let sky_color = sun_color + sky_bg * (1.0 - light_mult);
color += vec4<f32>(sky_color * (1.0 - color.a), 1.0 - color.a);
color.a = 1.0;
textureStore(output, cell.xy, color);
}
const LEAF_BIT = 1u << 31u;
const LEAF_MASK = ~LEAF_BIT;
const ZERO3F = vec3<f32>(0.0);
const ZERO2F = vec2<f32>(0.0);
const FULL_ALPHA = 0.999;
const EPSILON = 0.00000000001;
const MAX_ITERS = 2000;
// NOTE: CANNOT GO HIGHER THAN 23 due to how floating point
// numbers are stored and the bit manipulation used
const MAX_SCALE: u32 = 10;
fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0;
let group = voxel_groups[gi];
if group.scale == 0 {
return vec4<f32>(0.0);
}
let dimensions = vec3<u32>(1u << group.scale);
let dim_f = vec3<f32>(dimensions);
let dim_i = vec3<i32>(dimensions);
// transform so that group is at 0,0
let pos_start = (group.transform_inv * pos_view).xyz;
var dir = (group.transform_inv * dir_view).xyz;
if dir.x == 0 {dir.x = EPSILON;}
if dir.y == 0 {dir.y = EPSILON;}
if dir.z == 0 {dir.z = EPSILON;}
let dir_if = sign(dir);
let dir_uf = max(dir_if, vec3<f32>(0.0));
// calculate normals
var normals = mat3x3<f32>(
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz,
);
var axis = 0u;
// find where ray intersects with group
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
// time of intersection; x = td + p, solve for t
var t_min = (pos_min - pos_start) / dir;
if outside3f(pos_start, ZERO3F, dim_f) {
// points of intersection
let px = pos_start + t_min.x * dir;
let py = pos_start + t_min.y * dir;
let pz = pos_start + t_min.z * dir;
// check if point is in bounds
let hit = vec3<bool>(
inside2f(px.yz, ZERO2F, dim_f.yz),
inside2f(py.xz, ZERO2F, dim_f.xz),
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_min > ZERO3F);
if !any(hit) {
return vec4<f32>(0.0);
}
axis = select(select(2u, 1u, hit.y), 0u, hit.x);
}
let t_mult = f32(1u << (MAX_SCALE - group.scale));
t_min *= t_mult;
// time to move 1 unit in each direction
let full = f32(1u << MAX_SCALE);
let inc_t = abs(1.0 / dir) * full;
let t_offset = max(max(t_min.x, t_min.y), t_min.z);
var t = max(0.0, t_offset);
let dir_i = vec3<i32>(dir_if);
let dir_u = vec3<u32>((dir_i + vec3<i32>(1)) / 2);
let dir_bits = vec_to_dir(dir_u);
let inv_dir_bits = 7 - dir_bits;
var node_start = 1u;
var scale = MAX_SCALE - 1;
var scale_exp2 = 0.5;
var skip = LEAF_BIT;
var color = vec4<f32>(0.0);
var parents = array<u32, MAX_SCALE>();
var child = 0u;
var vox_pos = vec3<f32>(1.0);
let t_center = t_min + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x = 1.5; child |= 4u; }
if t > t_center.y { vox_pos.y = 1.5; child |= 2u; }
if t > t_center.z { vox_pos.z = 1.5; child |= 1u; }
let min_adj = t_min - inc_t;
var iters = 0;
loop {
if iters == MAX_ITERS {
return vec4<f32>(1.0, 0.0, 1.0, 1.0);
}
iters += 1;
let t_corner = vox_pos * inc_t + min_adj;
let node = voxels[group.offset + node_start + (child ^ inv_dir_bits)];
if node >= LEAF_BIT {
if node != skip && node != LEAF_BIT {
skip = node;
let normal = normals[axis];
let sun_dir = global_lights[0].dir;
let new_pos = pos_view + dir_view * t / t_mult - vec4<f32>(normals[axis] * 0.001, 0.0);
let light = trace_light(new_pos, vec4<f32>(-sun_dir, 0.0));
let diffuse = max(dot(sun_dir, normal) + 0.1, 0.0);
let ambient = 0.2;
let specular = (exp(max(
-(dot(reflect(dir_view.xyz, normal), sun_dir) + 0.90) * 4.0, 0.0
)) - 1.0) * light;
let lighting = max(diffuse * light.a, ambient);
let vcolor = get_color(node & LEAF_MASK);
let new_rgb = min(vcolor.xyz * lighting + specular.xyz + light.xyz * vcolor.xyz, vec3<f32>(1.0));
let new_a = min(vcolor.a + specular.a, 1.0);
let new_color = vec4<f32>(new_rgb, new_a);
color += vec4<f32>(new_color.xyz * new_color.a, new_color.a) * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
// move to next time point and determine which axis to move along
let t_next = t_corner + scale_exp2 * inc_t;
t = min(min(t_next.x, t_next.y), t_next.z);
axis = select(select(0u, 1u, t == t_next.y), 2u, t == t_next.z);
let move_dir = 4u >> axis;
// check if need to pop stack
if (child & move_dir) > 0 {
// calculate new scale; first differing bit after adding
let axis_pos = vox_pos[axis];
// AWARE
let differing = bitcast<u32>(axis_pos) ^ bitcast<u32>(axis_pos + scale_exp2);
scale = (bitcast<u32>(f32(differing)) >> 23) - 127 - (23 - MAX_SCALE);
scale_exp2 = bitcast<f32>((scale + 127 - MAX_SCALE) << 23);
if scale >= MAX_SCALE { break; }
// restore & recalculate parent
let parent_info = parents[scale];
node_start = parent_info >> 3;
child = parent_info & 7;
let scale_vec = vec3<u32>(scale + 23 - MAX_SCALE);
// remove bits lower than current scale
vox_pos = bitcast<vec3<f32>>((bitcast<vec3<u32>>(vox_pos) >> scale_vec) << scale_vec);
}
// move to next child and voxel position
child += move_dir;
vox_pos[axis] += scale_exp2;
} else {
// push current node to stack
parents[scale] = (node_start << 3) + child;
scale -= 1u;
// calculate child node vars
scale_exp2 *= 0.5;
child = 0u;
let t_center = t_corner + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x += scale_exp2; child |= 4u; }
if t > t_center.y { vox_pos.y += scale_exp2; child |= 2u; }
if t > t_center.z { vox_pos.z += scale_exp2; child |= 1u; }
node_start += 8 + node;
}
}
// return vec4<f32>(f32(iters) / f32(MAX_ITERS), 0.0, 0.0, 1.0);
return color;
}
fn trace_light(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0;
let group = voxel_groups[gi];
if group.scale == 0 {
return vec4<f32>(0.0);
}
let dimensions = vec3<u32>(1u << group.scale);
let dim_f = vec3<f32>(dimensions);
let dim_i = vec3<i32>(dimensions);
// transform so that group is at 0,0
let pos_start = (group.transform_inv * pos_view).xyz;
var dir = (group.transform_inv * dir_view).xyz;
if dir.x == 0 {dir.x = EPSILON;}
if dir.y == 0 {dir.y = EPSILON;}
if dir.z == 0 {dir.z = EPSILON;}
let dir_if = sign(dir);
let dir_uf = max(dir_if, vec3<f32>(0.0));
// calculate normals
var normals = mat3x3<f32>(
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz,
);
var axis = 0u;
// find where ray intersects with group
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
// time of intersection; x = td + p, solve for t
var t_min = (pos_min - pos_start) / dir;
if outside3f(pos_start, ZERO3F, dim_f) {
// points of intersection
let px = pos_start + t_min.x * dir;
let py = pos_start + t_min.y * dir;
let pz = pos_start + t_min.z * dir;
// check if point is in bounds
let hit = vec3<bool>(
inside2f(px.yz, ZERO2F, dim_f.yz),
inside2f(py.xz, ZERO2F, dim_f.xz),
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_min > ZERO3F);
if !any(hit) {
return vec4<f32>(0.0);
}
axis = select(select(2u, 1u, hit.y), 0u, hit.x);
}
let t_mult = f32(1u << (MAX_SCALE - group.scale));
t_min *= t_mult;
// time to move 1 unit in each direction
let full = f32(1u << MAX_SCALE);
let inc_t = abs(1.0 / dir) * full;
let t_offset = max(max(t_min.x, t_min.y), t_min.z);
var t = max(0.0, t_offset);
var old_t = t;
let dir_i = vec3<i32>(dir_if);
let dir_u = vec3<u32>((dir_i + vec3<i32>(1)) / 2);
let dir_bits = vec_to_dir(dir_u);
let inv_dir_bits = 7 - dir_bits;
var node_start = 1u;
var scale = MAX_SCALE - 1;
var scale_exp2 = 0.5;
var mask = vec4<f32>(0.0);
var skip = LEAF_BIT;
var parents = array<u32, MAX_SCALE>();
var child = 0u;
var vox_pos = vec3<f32>(1.0);
let t_center = t_min + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x = 1.5; child |= 4u; }
if t > t_center.y { vox_pos.y = 1.5; child |= 2u; }
if t > t_center.z { vox_pos.z = 1.5; child |= 1u; }
let min_adj = t_min - inc_t;
var data = 0u;
var iters = 0;
loop {
if iters == MAX_ITERS {
return vec4<f32>(1.0, 0.0, 1.0, 1.0);
}
iters += 1;
let t_corner = vox_pos * inc_t + min_adj;
let node = voxels[group.offset + node_start + (child ^ inv_dir_bits)];
if node >= LEAF_BIT {
if node != skip && node != LEAF_BIT {
skip = node;
if data == 3 {
let dist = (t - old_t) / t_mult;
let vcolor = vec4<f32>(vec3<f32>(0.0), min(dist / 12.0, 1.0));
mask += vec4<f32>(vcolor.xyz * vcolor.a, vcolor.a) * (1.0 - mask.a);
}
data = node & LEAF_MASK;
if data != 3 && data != 0 {
let vcolor = get_color(data);
mask += vec4<f32>(vcolor.xyz * vcolor.a, vcolor.a) * (1.0 - mask.a);
}
old_t = t;
if mask.a > FULL_ALPHA { break; }
}
// move to next time point and determine which axis to move along
let t_next = t_corner + scale_exp2 * inc_t;
t = min(min(t_next.x, t_next.y), t_next.z);
axis = select(select(0u, 1u, t == t_next.y), 2u, t == t_next.z);
let move_dir = 4u >> axis;
// check if need to pop stack
if (child & move_dir) > 0 {
// calculate new scale; first differing bit after adding
let axis_pos = vox_pos[axis];
// AWARE
let differing = bitcast<u32>(axis_pos) ^ bitcast<u32>(axis_pos + scale_exp2);
scale = (bitcast<u32>(f32(differing)) >> 23) - 127 - (23 - MAX_SCALE);
scale_exp2 = bitcast<f32>((scale + 127 - MAX_SCALE) << 23);
if scale >= MAX_SCALE { break; }
// restore & recalculate parent
let parent_info = parents[scale];
node_start = parent_info >> 3;
child = parent_info & 7;
let scale_vec = vec3<u32>(scale + 23 - MAX_SCALE);
// remove bits lower than current scale
vox_pos = bitcast<vec3<f32>>((bitcast<vec3<u32>>(vox_pos) >> scale_vec) << scale_vec);
}
// move to next child and voxel position
child += move_dir;
vox_pos[axis] += scale_exp2;
} else {
// push current node to stack
parents[scale] = (node_start << 3) + child;
scale -= 1u;
// calculate child node vars
scale_exp2 *= 0.5;
child = 0u;
let t_center = t_corner + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x += scale_exp2; child |= 4u; }
if t > t_center.y { vox_pos.y += scale_exp2; child |= 2u; }
if t > t_center.z { vox_pos.z += scale_exp2; child |= 1u; }
node_start += 8 + node;
}
}
if data == 3 {
let dist = (t - old_t) / t_mult;
let vcolor = vec4<f32>(vec3<f32>(0.0), min(dist / 12.0, 1.0));
mask += vec4<f32>(vcolor.xyz * vcolor.a, vcolor.a) * (1.0 - mask.a);
}
mask.a = 1.0 - mask.a;
mask = vec4<f32>(mask.a * mask.xyz, mask.a);
return mask;
}
fn dir_to_vec(bits: u32) -> vec3<u32> {
return vec3<u32>(bits >> 2, (bits & 2) >> 1, bits & 1);
}
fn vec_to_dir(vec: vec3<u32>) -> u32 {
return vec.x * 4 + vec.y * 2 + vec.z * 1;
}
fn get_color(id: u32) -> vec4<f32> {
switch id {
case 0u: {
return vec4<f32>(0.0);
}
case 1u: {
return vec4<f32>(0.5, 0.5, 0.5, 1.0);
}
case 2u: {
return vec4<f32>(0.5, 1.0, 0.5, 1.0);
}
case 3u: {
return vec4<f32>(0.5, 0.5, 1.0, 0.5);
}
default: {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
}
}
fn outside3f(v: vec3<f32>, low: vec3<f32>, high: vec3<f32>) -> bool {
return any(v < low) || any(v > high);
}
fn inside2f(v: vec2<f32>, low: vec2<f32>, high: vec2<f32>) -> bool {
return all(v >= low) && all(v <= high);
}
fn inside3i(v: vec3<i32>, low: vec3<i32>, high: vec3<i32>) -> bool {
return all(v >= low) && all(v <= high);
}

View File

@@ -35,67 +35,13 @@ fn main(@builtin(global_invocation_id) cell: vec3<u32>) {
} }
let view_dim_f = vec2<f32>(view_dim); let view_dim_f = vec2<f32>(view_dim);
let aspect = view_dim_f.y / view_dim_f.x; let aspect = view_dim_f.y / view_dim_f.x;
let pixel_pos = vec3<f32>( let pixel_pos = vec2<f32>(
(vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect), (vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect)
view.zoom
); );
let pos = view.transform * vec4<f32>(pixel_pos, 1.0); let pos = view.transform * vec4<f32>(pixel_pos, 1.0, 1.0);
let dir = view.transform * vec4<f32>(normalize(pixel_pos), 0.0); let dir = view.transform * vec4<f32>(normalize(vec3<f32>(pixel_pos, view.zoom)), 0.0);
let start = start_ray(pos, dir); var color = trace_full(pos, dir);
var color = vec4<f32>(0.0);
let ambient = 0.2;
if start.hit {
var res = ray_next(start.ray, LEAF_BIT);
var normals = start.normals;
let specular = (exp(max(
-(dot(reflect(dir.xyz, normals[res.ray.axis]), global_lights[0].dir) + 0.90) * 4.0, 0.0
)) - 1.0);
while res.data != 0 {
let data = res.data & LEAF_MASK;
if data != 0 {
let vcolor = get_color(data);
let diffuse = max(dot(global_lights[0].dir, normals[res.ray.axis]) + 0.1, 0.0);
let light = max(diffuse, ambient);
let new_color = min(vcolor.xyz * light, vec3<f32>(1.0));
color += vec4<f32>(new_color.xyz * vcolor.a, vcolor.a) * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
let old_t = res.ray.t;
res = ray_next(res.ray, res.data);
if data == 3 {
let dist = (res.ray.t - old_t) / start.t_mult;
let a = min(dist / 12.0, 1.0);
color += vec4<f32>(vec3<f32>(0.0) * a, a) * (1.0 - color.a);
}
}
if color.a != 0 {
let pos = pos + dir * res.ray.t / start.t_mult - vec4<f32>(normals[res.ray.axis] * 0.001, 0.0);
let dir = vec4<f32>(-global_lights[0].dir, 0.0);
let start = start_ray(pos, dir);
res = ray_next(start.ray, LEAF_BIT);
var light = 1.0;
while res.data != 0 {
let data = res.data & LEAF_MASK;
if data != 0 {
let vcolor = get_color(data);
if data != 3 { light -= vcolor.a * light; }
if light <= 0 { break; }
}
let old_t = res.ray.t;
res = ray_next(res.ray, res.data);
if data == 3 {
let dist = (res.ray.t - old_t) / start.t_mult;
let a = min(dist / 12.0, 1.0);
light -= a;
}
}
color = vec4<f32>(color.xyz * max(light, ambient), color.a) + vec4<f32>(vec3<f32>(specular * light), 0.0);
}
// color = vec4<f32>(pos.xyz / 128.0, 1.0);
}
// var color = trace_full(pos, dir);
let light_mult = clamp((-dot(dir.xyz, global_lights[0].dir) - 0.99) * 200.0, 0.0, 1.0); let light_mult = clamp((-dot(dir.xyz, global_lights[0].dir) - 0.99) * 200.0, 0.0, 1.0);
let sun_color = light_mult * vec3<f32>(1.0, 1.0, 1.0); let sun_color = light_mult * vec3<f32>(1.0, 1.0, 1.0);
let sky_bg = vec3<f32>(0.3, 0.6, 1.0); let sky_bg = vec3<f32>(0.3, 0.6, 1.0);
@@ -112,49 +58,25 @@ const ZERO3F = vec3<f32>(0.0);
const ZERO2F = vec2<f32>(0.0); const ZERO2F = vec2<f32>(0.0);
const FULL_ALPHA = 0.999; const FULL_ALPHA = 0.999;
const EPSILON = 0.00000000001; const EPSILON = 0.00000000001;
const MAX_ITERS = 2000; const MAX_ITERS = 10000;
// NOTE: CANNOT GO HIGHER THAN 23 due to how floating point // NOTE: CANNOT GO HIGHER THAN 23 due to how floating point
// numbers are stored and the bit manipulation used // numbers are stored and the bit manipulation used
const MAX_SCALE: u32 = 10; const MAX_SCALE: u32 = 13;
const AMBIENT: f32 = 0.2;
const SPECULAR: f32 = 0.5;
struct Ray { fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
t: f32,
vox_pos: vec3<f32>,
t_inc: vec3<f32>,
scale: u32,
min_adj: vec3<f32>,
child: u32,
axis: u32,
node_start: u32,
group_offset: u32,
inv_dir_bits: u32,
parents: array<u32, MAX_SCALE>,
};
struct RayResult {
ray: Ray,
data: u32,
}
struct RayStart {
hit: bool,
ray: Ray,
normals: mat3x3<f32>,
t_mult: f32,
}
fn start_ray(pos_view: vec4<f32>, dir_view: vec4<f32>) -> RayStart {
let gi = 0; let gi = 0;
let group = voxel_groups[gi]; let group = voxel_groups[gi];
if group.scale == 0 { if group.scale == 0 {
return RayStart(); return vec4<f32>(0.0);
} }
let dimensions = vec3<u32>(1u << group.scale); let dimensions = vec3<u32>(1u << group.scale);
let dim_f = vec3<f32>(dimensions); let dim_f = vec3<f32>(dimensions);
let dim_i = vec3<i32>(dimensions); let dim_i = vec3<i32>(dimensions);
// transform so that group is at 0,0 // transform so that group is at 0,0
let pos = (group.transform_inv * pos_view).xyz; let pos_start = (group.transform_inv * pos_view).xyz;
var dir = (group.transform_inv * dir_view).xyz; var dir = (group.transform_inv * dir_view).xyz;
if dir.x == 0 {dir.x = EPSILON;} if dir.x == 0 {dir.x = EPSILON;}
if dir.y == 0 {dir.y = EPSILON;} if dir.y == 0 {dir.y = EPSILON;}
@@ -176,12 +98,12 @@ fn start_ray(pos_view: vec4<f32>, dir_view: vec4<f32>) -> RayStart {
// find where ray intersects with group // find where ray intersects with group
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f; let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
// time of intersection; x = td + p, solve for t // time of intersection; x = td + p, solve for t
var t_min = (pos_min - pos) / dir; var t_min = (pos_min - pos_start) / dir;
if outside3f(pos, ZERO3F, dim_f) { if outside3f(pos_start, ZERO3F, dim_f) {
// points of intersection // points of intersection
let px = pos + t_min.x * dir; let px = pos_start + t_min.x * dir;
let py = pos + t_min.y * dir; let py = pos_start + t_min.y * dir;
let pz = pos + t_min.z * dir; let pz = pos_start + t_min.z * dir;
// check if point is in bounds // check if point is in bounds
let hit = vec3<bool>( let hit = vec3<bool>(
@@ -190,81 +112,80 @@ fn start_ray(pos_view: vec4<f32>, dir_view: vec4<f32>) -> RayStart {
inside2f(pz.xy, ZERO2F, dim_f.xy), inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_min > ZERO3F); ) && (t_min > ZERO3F);
if !any(hit) { if !any(hit) {
return RayStart(); return vec4<f32>(0.0);
} }
axis = select(select(2u, 1u, hit.y), 0u, hit.x); axis = select(select(2u, 1u, hit.y), 0u, hit.x);
} }
let t_mult = f32(1u << (MAX_SCALE - group.scale)); let t_mult = f32(1u << (MAX_SCALE - group.scale));
t_min *= t_mult; t_min *= t_mult;
// time to move 1 unit in each direction
let full = f32(1u << MAX_SCALE); let full = f32(1u << MAX_SCALE);
let t_inc = abs(1.0 / dir) * full; // time to move entire side length in each direction
let inc_t = abs(1.0 / dir) * full;
let t_offset = max(max(t_min.x, t_min.y), t_min.z); let t_offset = max(max(t_min.x, t_min.y), t_min.z);
let t = max(0.0, t_offset); var t = max(0.0, t_offset);
let dir_i = vec3<i32>(dir_if); let dir_i = vec3<i32>(dir_if);
let dir_u = vec3<u32>((dir_i + vec3<i32>(1)) / 2); let dir_u = vec3<u32>(dir_uf);
let dir_bits = vec_to_dir(dir_u); let dir_bits = vec_to_dir(dir_u);
let inv_dir_bits = 7 - dir_bits; let inv_dir_bits = 7 - dir_bits;
let node_start = 1u; var node_start = 1u;
let scale = MAX_SCALE - 1; var scale = MAX_SCALE - 1;
let scale_exp2 = 0.5; var scale_exp2 = 0.5;
let parents = array<u32, MAX_SCALE>(); var color = vec4<f32>(0.0);
var parents = array<u32, MAX_SCALE>();
var prev = LEAF_BIT;
var old_t = t / t_mult;
var child = 0u; var child = 0u;
var vox_pos = vec3<f32>(1.0); var vox_pos = vec3<f32>(1.0);
let t_center = t_min + scale_exp2 * t_inc; let t_center = t_min + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x = 1.5; child |= 4u; } if t > t_center.x { vox_pos.x = 1.5; child |= 4u; }
if t > t_center.y { vox_pos.y = 1.5; child |= 2u; } if t > t_center.y { vox_pos.y = 1.5; child |= 2u; }
if t > t_center.z { vox_pos.z = 1.5; child |= 1u; } if t > t_center.z { vox_pos.z = 1.5; child |= 1u; }
let min_adj = t_min - t_inc; let min_adj = t_min - inc_t;
return RayStart( var iters = 0;
true,
Ray(
t,
vox_pos,
t_inc,
scale,
min_adj,
child,
axis,
node_start,
group.offset,
inv_dir_bits,
parents,
),
normals,
t_mult,
);
}
fn ray_next(ray: Ray, skip: u32) -> RayResult {
let group_offset = ray.group_offset;
let t_inc = ray.t_inc;
let min_adj = ray.min_adj;
let inv_dir_bits = ray.inv_dir_bits;
var scale = ray.scale;
var scale_exp2 = bitcast<f32>((scale + 127 - MAX_SCALE) << 23);
var vox_pos = ray.vox_pos;
var t = ray.t;
var node_start = ray.node_start;
var child = ray.child;
var parents = ray.parents;
var axis: u32;
var data = 0u;
loop { loop {
let t_corner = vox_pos * t_inc + min_adj; if iters == MAX_ITERS {
let node = voxels[group_offset + node_start + (child ^ inv_dir_bits)]; return vec4<f32>(1.0, 0.0, 1.0, 1.0);
}
iters += 1;
let t_corner = vox_pos * inc_t + min_adj;
let node = voxels[group.offset + node_start + (child ^ inv_dir_bits)];
if node >= LEAF_BIT { if node >= LEAF_BIT {
if node != skip { if node != prev {
data = node; if node != LEAF_BIT {
break; let real_t = t / t_mult;
let dist = real_t - old_t;
old_t = real_t;
let filt = min(dist / 64.0, 1.0);
if prev == LEAF_BIT + 3 {
color.a += filt * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
var pos = (pos_view + dir_view * real_t).xyz;
pos[axis] = round(pos[axis]) - (1.0 - dir_uf[axis]);
let vcolor = get_color(node & LEAF_MASK, pos);
var normal = normals[axis];
let light_color = vec3<f32>(1.0);
let light_dir = global_lights[0].dir;
let diffuse = max(dot(light_dir, normal), 0.0) * light_color;
let ambient = AMBIENT * light_color;
let spec_val = pow(max(dot(dir_view.xyz, reflect(-light_dir, normal)), 0.0), 32.0) * SPECULAR;
let specular = spec_val * light_color;
let new_color = (ambient + diffuse + specular) * vcolor.xyz;
let new_a = min(vcolor.a + spec_val, 1.0);
color += vec4<f32>(new_color.xyz * new_a, new_a) * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
prev = node;
} }
// move to next time point and determine which axis to move along // move to next time point and determine which axis to move along
let t_next = t_corner + scale_exp2 * t_inc; let t_next = t_corner + scale_exp2 * inc_t;
t = min(min(t_next.x, t_next.y), t_next.z); t = min(min(t_next.x, t_next.y), t_next.z);
axis = select(select(0u, 1u, t == t_next.y), 2u, t == t_next.z); axis = select(select(0u, 1u, t == t_next.y), 2u, t == t_next.z);
let move_dir = 4u >> axis; let move_dir = 4u >> axis;
@@ -298,29 +219,17 @@ fn ray_next(ray: Ray, skip: u32) -> RayResult {
// calculate child node vars // calculate child node vars
scale_exp2 *= 0.5; scale_exp2 *= 0.5;
child = 0u; child = 0u;
let t_center = t_corner + scale_exp2 * t_inc; let t_center = t_corner + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x += scale_exp2; child |= 4u; } if t > t_center.x { vox_pos.x += scale_exp2; child |= 4u; }
if t > t_center.y { vox_pos.y += scale_exp2; child |= 2u; } if t > t_center.y { vox_pos.y += scale_exp2; child |= 2u; }
if t > t_center.z { vox_pos.z += scale_exp2; child |= 1u; } if t > t_center.z { vox_pos.z += scale_exp2; child |= 1u; }
node_start += 8 + node; node_start = node;
} }
} }
return RayResult( // let fog = min(t / t_mult / 1000.0, 1.0);
Ray( // return vec4<f32>(color.xyz * (1.0 - fog) + vec3<f32>(fog), color.a * (1.0 - fog) + fog);
t, // return vec4<f32>(f32(iters) / f32(MAX_ITERS), 0.0, 0.0, 1.0);
vox_pos, return color;
t_inc,
scale,
min_adj,
child,
axis,
node_start,
group_offset,
inv_dir_bits,
parents,
),
data
);
} }
fn dir_to_vec(bits: u32) -> vec3<u32> { fn dir_to_vec(bits: u32) -> vec3<u32> {
@@ -331,19 +240,24 @@ fn vec_to_dir(vec: vec3<u32>) -> u32 {
return vec.x * 4 + vec.y * 2 + vec.z * 1; return vec.x * 4 + vec.y * 2 + vec.z * 1;
} }
fn get_color(id: u32) -> vec4<f32> { fn get_color(id: u32, pos: vec3<f32>) -> vec4<f32> {
let random = random(floor(pos));
let random2 = random(floor(pos) + vec3<f32>(0.0001));
switch id { switch id {
case 0u: { case 0u: {
return vec4<f32>(0.0); return vec4<f32>(0.0);
} }
case 1u: { case 1u: {
return vec4<f32>(0.5, 0.5, 0.5, 1.0); let color = vec3<f32>(0.5, 0.5, 0.5 + random * 0.2) * (random2 * 0.4 + 0.8);
return vec4<f32>(color, 1.0);
} }
case 2u: { case 2u: {
return vec4<f32>(0.5, 1.0, 0.5, 1.0); let color = vec3<f32>(0.4 + random * 0.2, 0.9, 0.4 + random * 0.2) * (random2 * 0.2 + 0.9);
return vec4<f32>(color, 1.0);
} }
case 3u: { case 3u: {
return vec4<f32>(0.5, 0.5, 1.0, 0.5); let color = vec3<f32>(0.5, 0.5, 1.0) * (random2 * 0.2 + 0.8);
return vec4<f32>(color, 0.5);
} }
default: { default: {
return vec4<f32>(1.0, 0.0, 0.0, 1.0); return vec4<f32>(1.0, 0.0, 0.0, 1.0);
@@ -351,6 +265,10 @@ fn get_color(id: u32) -> vec4<f32> {
} }
} }
fn random(pos: vec3<f32>) -> f32 {
return fract(sin(dot(pos, vec3<f32>(12.9898, 78.233, 25.1279))) * 43758.5453123);
}
fn outside3f(v: vec3<f32>, low: vec3<f32>, high: vec3<f32>) -> bool { fn outside3f(v: vec3<f32>, low: vec3<f32>, high: vec3<f32>) -> bool {
return any(v < low) || any(v > high); return any(v < low) || any(v > high);
} }

View File

@@ -1,10 +1,14 @@
use nalgebra::Transform3; use nalgebra::Transform3;
use crate::common::component::chunk::SCALE;
#[repr(C, align(16))] #[repr(C, align(16))]
#[derive(Clone, Copy, PartialEq, bytemuck::Zeroable)] #[derive(Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct View { pub struct View {
pub transform: Transform3<f32>, pub transform: Transform3<f32>,
pub zoom: f32, pub zoom: f32,
pub chunk_scale: u32,
pub chunk_radius: u32,
} }
unsafe impl bytemuck::Pod for View {} unsafe impl bytemuck::Pod for View {}
@@ -14,6 +18,8 @@ impl Default for View {
Self { Self {
zoom: 1.0, zoom: 1.0,
transform: Transform3::identity(), transform: Transform3::identity(),
chunk_scale: SCALE,
chunk_radius: 2,
} }
} }
} }

View File

@@ -8,7 +8,7 @@ use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{bundle::Bundle, component::Component, entity::Entity, system::Resource}; use bevy_ecs::{bundle::Bundle, component::Component, entity::Entity, system::Resource};
use nalgebra::Vector3; use nalgebra::Vector3;
pub const SCALE: u32 = 13; pub const SCALE: u32 = 9;
pub const SIDE_LENGTH: usize = 2usize.pow(SCALE); pub const SIDE_LENGTH: usize = 2usize.pow(SCALE);
pub const SHAPE: (usize, usize, usize) = (SIDE_LENGTH, SIDE_LENGTH, SIDE_LENGTH); pub const SHAPE: (usize, usize, usize) = (SIDE_LENGTH, SIDE_LENGTH, SIDE_LENGTH);
pub const DIMENSIONS: Vector3<usize> = Vector3::new(SIDE_LENGTH, SIDE_LENGTH, SIDE_LENGTH); pub const DIMENSIONS: Vector3<usize> = Vector3::new(SIDE_LENGTH, SIDE_LENGTH, SIDE_LENGTH);

View File

@@ -86,7 +86,7 @@ impl OctTree {
assert!(levels > 0); assert!(levels > 0);
let mut data = Vec::new(); let mut data = Vec::new();
let mut map = OctNodeMap::default(); let mut map = OctNodeMap::default();
data.push(OctNode::new_node(0)); data.push(OctNode::new_node(1));
Self::from_fn_offset_inner(f_leaf, f_node, &mut data, levels, offset, &mut map); Self::from_fn_offset_inner(f_leaf, f_node, &mut data, levels, offset, &mut map);
if data.len() == 2 { if data.len() == 2 {
data.remove(0); data.remove(0);

View File

@@ -25,6 +25,11 @@ impl Timer {
self.times[self.pos] = Some(self.start); self.times[self.pos] = Some(self.start);
self.pos = (self.pos + 1) % self.times.len(); self.pos = (self.pos + 1) % self.times.len();
} }
pub fn add(&mut self, duration: Duration) {
self.durs[self.pos] = Some(duration);
self.times[self.pos] = Some(Instant::now());
self.pos = (self.pos + 1) % self.times.len();
}
pub fn avg(&self) -> Duration { pub fn avg(&self) -> Duration {
let filtered: Vec<_> = self.durs.iter().filter_map(|d| *d).collect(); let filtered: Vec<_> = self.durs.iter().filter_map(|d| *d).collect();
let len = filtered.len(); let len = filtered.len();
@@ -45,8 +50,9 @@ impl Timer {
pub fn per_sec(&self) -> usize { pub fn per_sec(&self) -> usize {
let now = Instant::now(); let now = Instant::now();
let mut count = 0; let mut count = 0;
while count < self.times.len() { let len = self.times.len();
let i = (self.pos + count + 1) % self.times.len(); while count < len {
let i = (self.pos + len - count - 1) % len;
let Some(t) = self.times[i] else { break }; let Some(t) = self.times[i] else { break };
if now - t <= Duration::from_secs(1) { if now - t <= Duration::from_secs(1) {
count += 1; count += 1;