224 lines
7.1 KiB
WebGPU Shading Language
224 lines
7.1 KiB
WebGPU Shading Language
// Vertex shader
|
|
|
|
struct VertexOutput {
|
|
@builtin(position) clip_position: vec4<f32>,
|
|
@location(0) tex_coords: vec2<f32>,
|
|
};
|
|
|
|
struct View {
|
|
width: u32,
|
|
height: u32,
|
|
zoom: f32,
|
|
padding: u32,
|
|
transform: mat4x4<f32>,
|
|
};
|
|
|
|
struct VoxelGroup {
|
|
transform: mat4x4<f32>,
|
|
transform_inv: mat4x4<f32>,
|
|
dimensions: vec3<u32>,
|
|
offset: u32,
|
|
};
|
|
|
|
@group(0) @binding(0)
|
|
var<uniform> view: View;
|
|
@group(0) @binding(1)
|
|
var<storage, read> voxels: array<u32>;
|
|
@group(0) @binding(2)
|
|
var<storage, read> voxel_groups: array<VoxelGroup>;
|
|
|
|
@vertex
|
|
fn vs_main(
|
|
@builtin(vertex_index) vi: u32,
|
|
@builtin(instance_index) ii: u32,
|
|
) -> VertexOutput {
|
|
var out: VertexOutput;
|
|
|
|
var pos = vec2<f32>(
|
|
f32(vi % 2u) * 2.0 - 1.0,
|
|
f32(vi / 2u) * 2.0 - 1.0,
|
|
);
|
|
out.clip_position = vec4<f32>(pos.x, pos.y, 0.0, 1.0);
|
|
out.tex_coords = pos;
|
|
return out;
|
|
}
|
|
|
|
// Fragment shader
|
|
|
|
@fragment
|
|
fn fs_main(
|
|
in: VertexOutput,
|
|
) -> @location(0) vec4<f32> {
|
|
// get position of the pixel; eye at origin, pixel on plane z = 1
|
|
let win_dim = vec2<f32>(f32(view.width), f32(view.height));
|
|
let aspect = win_dim.y / win_dim.x;
|
|
let pixel_pos = vec3<f32>(
|
|
(in.clip_position.xy / win_dim - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect),
|
|
1.0
|
|
);
|
|
|
|
// move to position in world
|
|
let pos = view.transform * vec4<f32>(pixel_pos, 1.0);
|
|
let dir = view.transform * vec4<f32>(normalize(pixel_pos), 0.0);
|
|
|
|
var color = trace_full(pos, dir);
|
|
let light_mult = clamp((-dot(dir.xyz, normalize(GLOBAL_LIGHT)) - 0.99) * 200.0, 0.0, 1.0);
|
|
let sky_color = light_mult * vec3<f32>(1.0, 1.0, 1.0);
|
|
color += vec4<f32>(sky_color * (1.0 - color.a), 1.0 - color.a);
|
|
color.a = 1.0;
|
|
return color;
|
|
}
|
|
|
|
const ZERO3F = vec3<f32>(0.0);
|
|
const ZERO2F = vec2<f32>(0.0);
|
|
const DEPTH = 20;
|
|
const FULL_ALPHA = 0.9999;
|
|
const GLOBAL_LIGHT = vec3<f32>(-0.5, -4.0, 2.0);
|
|
|
|
fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
|
|
// GPUs hate this
|
|
var depths = array<f32,DEPTH>();
|
|
var colors = array<u32,DEPTH>();
|
|
|
|
for (var gi: u32 = 0; gi < arrayLength(&voxel_groups); gi = gi + 1) {
|
|
apply_group(gi, pos_view, dir_view, &depths, &colors);
|
|
}
|
|
var color = vec4<f32>(0.0);
|
|
for (var di = 0; di < DEPTH; di += 1) {
|
|
let vcolor = unpack4x8unorm(colors[di]);
|
|
color += vec4<f32>(vcolor.xyz * vcolor.a * (1.0 - color.a), (1.0 - color.a) * vcolor.a);
|
|
if vcolor.a == 0.0 || color.a >= FULL_ALPHA {
|
|
return color;
|
|
}
|
|
}
|
|
return color;
|
|
}
|
|
|
|
// apparently GPUs don't like dynamic indexing cause they just have
|
|
// a ton of registers instead of fast memory access; should probably
|
|
// try to optimize for that where I can
|
|
|
|
fn apply_group(
|
|
gi: u32, pos_view: vec4<f32>, dir_view: vec4<f32>,
|
|
depths: ptr<function, array<f32, DEPTH>>,
|
|
colors: ptr<function, array<u32,DEPTH>>,
|
|
) {
|
|
let group = voxel_groups[gi];
|
|
let dim_f = vec3<f32>(group.dimensions);
|
|
let dim_i = vec3<i32>(group.dimensions);
|
|
|
|
// transform so that group is at 0,0
|
|
var pos = (group.transform_inv * pos_view).xyz;
|
|
let dir = (group.transform_inv * dir_view).xyz;
|
|
|
|
let dir_if = sign(dir);
|
|
|
|
|
|
|
|
// calculate normals; maybe should do this on cpu?
|
|
let normals = mat3x3<f32>(
|
|
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz,
|
|
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz,
|
|
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz,
|
|
);
|
|
var next_normal = vec3<f32>(0.0, 0.0, 0.0);
|
|
let norm_light = normalize(GLOBAL_LIGHT);
|
|
|
|
// find where ray intersects with group
|
|
let plane_point = (vec3<f32>(1.0) - dir_if) / 2.0 * dim_f;
|
|
var t_offset = 0.0;
|
|
if outside3f(pos, ZERO3F, dim_f) {
|
|
// time of intersection; x = td + p, solve for t
|
|
let t_i = (plane_point - pos) / dir;
|
|
// points of intersection
|
|
let px = pos + t_i.x * dir;
|
|
let py = pos + t_i.y * dir;
|
|
let pz = pos + t_i.z * dir;
|
|
|
|
// check if point is in bounds
|
|
let hit = vec3<bool>(
|
|
inside2f(px.yz, ZERO2F, dim_f.yz),
|
|
inside2f(py.xz, ZERO2F, dim_f.xz),
|
|
inside2f(pz.xy, ZERO2F, dim_f.xy),
|
|
) && (t_i > ZERO3F);
|
|
if !any(hit) {
|
|
return;
|
|
}
|
|
pos = select(select(pz, py, hit.y), px, hit.x);
|
|
t_offset = select(select(t_i.z, t_i.y, hit.y), t_i.x, hit.x);
|
|
next_normal = select(select(normals[2], normals[1], hit.y), normals[0], hit.x);
|
|
}
|
|
var vox_pos = clamp(vec3<i32>(pos), vec3<i32>(0), dim_i - vec3<i32>(1));
|
|
|
|
|
|
|
|
let dir_i = vec3<i32>(dir_if);
|
|
// time to move 1 unit using dir
|
|
let inc_t = abs(1.0 / dir);
|
|
let corner = vec3<f32>(vox_pos) + vec3<f32>(0.5) + dir_if / 2.0;
|
|
|
|
// time of next plane hit for each direction
|
|
var next_t = inc_t * abs(pos - corner);
|
|
var alpha = 0.0;
|
|
var t = 0.0;
|
|
var prev_t = t;
|
|
var depth = 0;
|
|
var prev_a = 0.0;
|
|
loop {
|
|
let i = u32(vox_pos.x + vox_pos.y * dim_i.x + vox_pos.z * dim_i.x * dim_i.y) + group.offset;
|
|
var vcolor = unpack4x8unorm(voxels[i]);
|
|
let normal = next_normal;
|
|
|
|
// select next voxel to move to next based on least time
|
|
let axis = select(select(2, 1, next_t.y < next_t.z), 0, next_t.x < next_t.y && next_t.x < next_t.z);
|
|
next_normal = select(select(normals[2], normals[1], axis == 1), normals[0], axis == 0);
|
|
prev_t = t;
|
|
// might want to make multiplication mask w select instead of dynamically indexing
|
|
t = next_t[axis];
|
|
vox_pos[axis] += dir_i[axis];
|
|
next_t[axis] += inc_t[axis];
|
|
|
|
// hit a voxel
|
|
if vcolor.a > 0.0 {
|
|
let full_t = t_offset + prev_t;
|
|
// skip closer depth hits, or completely if behind opaque
|
|
var a = unpack4x8unorm((*colors)[depth]).a;
|
|
while (*depths)[depth] < full_t && a != 0.0 {
|
|
alpha += (1.0 - alpha) * a;
|
|
if depth + 1 >= DEPTH || alpha >= FULL_ALPHA {
|
|
return;
|
|
}
|
|
depth += 1;
|
|
a = unpack4x8unorm((*colors)[depth]).a;
|
|
}
|
|
var move_d = depth;
|
|
// move further depth hits back (top 10 efficient algorithms)
|
|
while move_d < DEPTH - 1 && unpack4x8unorm((*colors)[move_d]).a != 0.0 {
|
|
(*colors)[move_d + 1] = (*colors)[move_d];
|
|
(*depths)[move_d + 1] = (*depths)[move_d];
|
|
move_d += 1;
|
|
}
|
|
// add hit
|
|
let light = max(dot(norm_light, normal) * 1.3 + 0.1, 0.1);
|
|
var color = vec4<f32>(vcolor.xyz * light, vcolor.a);
|
|
(*depths)[depth] = full_t;
|
|
(*colors)[depth] = pack4x8unorm(color);
|
|
prev_a = vcolor.a;
|
|
depth += 1;
|
|
alpha += (1.0 - alpha) * vcolor.a;
|
|
}
|
|
|
|
if alpha >= FULL_ALPHA || depth >= DEPTH || vox_pos[axis] < 0 || vox_pos[axis] >= dim_i[axis] {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn outside3f(v: vec3<f32>, low: vec3<f32>, high: vec3<f32>) -> bool {
|
|
return any(v < low) || any(v > high);
|
|
}
|
|
|
|
fn inside2f(v: vec2<f32>, low: vec2<f32>, high: vec2<f32>) -> bool {
|
|
return all(v >= low) && all(v <= high);
|
|
}
|