RAY CASTED OCT TREE RENDERING

This commit is contained in:
2024-06-25 22:06:19 -04:00
parent 3280a0ed53
commit 653a1192e0
18 changed files with 1468 additions and 230 deletions

View File

@@ -1,6 +1,6 @@
use crate::{ use crate::{
client::camera::Camera, client::camera::Camera,
common::component::{ChunkMesh, ChunkPos}, common::component::{ChunkMesh, ChunkPos}, util::oct_tree::OctTree,
}; };
use super::{voxel::VoxelColor, Renderer}; use super::{voxel::VoxelColor, Renderer};
@@ -32,6 +32,7 @@ pub struct AddChunk {
pub id: Entity, pub id: Entity,
pub pos: ChunkPos, pub pos: ChunkPos,
pub mesh: ChunkMesh, pub mesh: ChunkMesh,
pub tree: OctTree,
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]

View File

@@ -1,3 +1,3 @@
mod poly; // mod poly; pub use poly::*;
// mod ray; // mod ray; pub use ray::*;
pub use poly::*; mod ray_oct; pub use ray_oct::*;

View File

@@ -249,7 +249,7 @@ impl VoxelPipeline {
device: &wgpu::Device, device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder, encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt, belt: &mut wgpu::util::StagingBelt,
AddChunk { id, pos, mesh }: AddChunk, AddChunk { id, pos, mesh, .. }: AddChunk,
) { ) {
if mesh.faces.iter().all(|f| f.is_empty()) { if mesh.faces.iter().all(|f| f.is_empty()) {
return; return;

View File

@@ -0,0 +1,53 @@
use rand::distributions::{Distribution, Standard};
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct VoxelColor {
pub r: u8,
pub g: u8,
pub b: u8,
pub a: u8,
}
unsafe impl bytemuck::Pod for VoxelColor {}
impl VoxelColor {
pub fn none() -> Self {
Self {
r: 0,
g: 0,
b: 0,
a: 0,
}
}
pub fn black() -> Self {
Self {
r: 0,
g: 0,
b: 0,
a: 255,
}
}
pub fn white() -> Self {
Self {
r: 255,
g: 255,
b: 255,
a: 255,
}
}
pub fn random() -> Self {
rand::random()
}
}
impl Distribution<VoxelColor> for Standard {
fn sample<R: rand::prelude::Rng + ?Sized>(&self, rng: &mut R) -> VoxelColor {
VoxelColor {
r: rng.gen(),
g: rng.gen(),
b: rng.gen(),
a: rng.gen(),
}
}
}

View File

@@ -0,0 +1,24 @@
use nalgebra::Matrix4x3;
// this has cost me more than a couple of hours trying to figure out alignment :skull:
// putting transform at the beginning so I don't have to deal with its alignment
// I should probably look into encase (crate)
#[repr(C, align(16))]
#[derive(Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct GridInfo {
pub transform: Matrix4x3<f32>,
pub width: u32,
pub height: u32,
}
unsafe impl bytemuck::Pod for GridInfo {}
impl Default for GridInfo {
fn default() -> Self {
Self {
transform: Matrix4x3::identity(),
width: 0,
height: 0,
}
}
}

View File

@@ -0,0 +1,12 @@
use nalgebra::{Projective3, Vector3};
#[repr(C, align(16))]
#[derive(Debug, Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct VoxelGroup {
pub transform: Projective3<f32>,
pub transform_inv: Projective3<f32>,
pub dimensions: Vector3<u32>,
pub offset: u32,
}
unsafe impl bytemuck::Pod for VoxelGroup {}

View File

@@ -0,0 +1,9 @@
use nalgebra::Vector3;
#[repr(C, align(16))]
#[derive(Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct GlobalLight {
pub direction: Vector3<f32>,
}
unsafe impl bytemuck::Pod for GlobalLight {}

View File

@@ -0,0 +1,297 @@
mod color;
mod grid;
mod group;
mod light;
mod view;
pub use color::*;
use super::super::UpdateGridTransform;
use crate::{client::{
camera::Camera,
render::{
util::{ArrBufUpdate, Storage, Texture, Uniform},
AddChunk, CreateVoxelGrid,
},
}, common::component::chunk, util::oct_tree::OctNode};
use bevy_ecs::entity::Entity;
use light::GlobalLight;
use nalgebra::{Projective3, Transform3, Translation3, Vector2, Vector3};
use std::{collections::HashMap, ops::Deref};
use {group::VoxelGroup, view::View};
pub struct VoxelPipeline {
pipeline: wgpu::RenderPipeline,
view: Uniform<View>,
bind_group_layout: wgpu::BindGroupLayout,
bind_group: wgpu::BindGroup,
voxel_groups: Storage<VoxelGroup>,
voxels: Storage<OctNode>,
global_lights: Storage<GlobalLight>,
id_map: HashMap<Entity, (usize, VoxelGroup)>,
}
impl VoxelPipeline {
pub fn new(device: &wgpu::Device, config: &wgpu::SurfaceConfiguration) -> Self {
// shaders
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Tile Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let view = Uniform::init(device, "view", 0);
let voxels = Storage::init(device, "voxels", 1);
let voxel_groups = Storage::init(device, "voxel groups", 2);
let global_lights = Storage::init_with(
device,
"global lights",
3,
&[GlobalLight {
direction: Vector3::new(-0.5, -4.0, 2.0).normalize(),
}],
);
// bind groups
let bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
view.bind_group_layout_entry(),
voxels.bind_group_layout_entry(),
voxel_groups.bind_group_layout_entry(),
global_lights.bind_group_layout_entry(),
],
label: Some("tile_bind_group_layout"),
});
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &bind_group_layout,
entries: &[
view.bind_group_entry(),
voxels.bind_group_entry(),
voxel_groups.bind_group_entry(),
global_lights.bind_group_entry(),
],
label: Some("tile_bind_group"),
});
// pipeline
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Tile Pipeline Layout"),
bind_group_layouts: &[&bind_group_layout],
push_constant_ranges: &[],
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Voxel Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[],
compilation_options: wgpu::PipelineCompilationOptions::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: wgpu::PipelineCompilationOptions::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleStrip,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None,
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: Some(wgpu::DepthStencilState {
format: Texture::DEPTH_FORMAT,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: true,
},
multiview: None,
});
Self {
pipeline: render_pipeline,
view,
bind_group,
bind_group_layout,
voxels,
voxel_groups,
global_lights,
id_map: HashMap::new(),
}
}
pub fn add_group(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
CreateVoxelGrid {
id,
pos,
orientation,
dimensions,
grid,
}: CreateVoxelGrid,
) {
// let offset = self.voxels.len();
//
// let updates = [ArrBufUpdate {
// offset,
// data: &grid.as_slice().unwrap(),
// }];
// let size = offset + grid.len();
// self.voxels.update(device, encoder, belt, size, &updates);
//
// let proj = Projective3::identity()
// * Translation3::from(pos)
// * orientation
// * Translation3::from(-dimensions.cast() / 2.0);
// let group = VoxelGroup {
// transform: proj,
// transform_inv: proj.inverse(),
// dimensions: dimensions.cast(),
// offset: offset as u32,
// };
// let updates = [ArrBufUpdate {
// offset: self.voxel_groups.len(),
// data: &[group],
// }];
// let i = self.voxel_groups.len();
// let size = i + 1;
// self.voxel_groups
// .update(device, encoder, belt, size, &updates);
//
// self.id_map.insert(id, (i, group));
//
// self.bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
// layout: &self.bind_group_layout,
// entries: &[
// self.view.bind_group_entry(),
// self.voxels.bind_group_entry(),
// self.voxel_groups.bind_group_entry(),
// self.global_lights.bind_group_entry(),
// ],
// label: Some("tile_bind_group"),
// });
}
pub fn add_chunk(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
AddChunk {
id,
pos,
tree,
..
}: AddChunk,
) {
let offset = self.voxels.len();
let data = tree.raw();
let updates = [ArrBufUpdate {
offset,
data,
}];
let size = offset + data.len();
self.voxels.update(device, encoder, belt, size, &updates);
let proj = Projective3::identity()
* Translation3::from((pos.deref() * chunk::SIDE_LENGTH as i32).cast())
* Translation3::from(-chunk::DIMENSIONS.cast() / 2.0);
let group = VoxelGroup {
transform: proj,
transform_inv: proj.inverse(),
dimensions: chunk::DIMENSIONS.cast(),
offset: offset as u32,
};
let updates = [ArrBufUpdate {
offset: self.voxel_groups.len(),
data: &[group],
}];
let i = self.voxel_groups.len();
let size = i + 1;
self.voxel_groups
.update(device, encoder, belt, size, &updates);
self.id_map.insert(id, (i, group));
self.bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.bind_group_layout,
entries: &[
self.view.bind_group_entry(),
self.voxels.bind_group_entry(),
self.voxel_groups.bind_group_entry(),
self.global_lights.bind_group_entry(),
],
label: Some("tile_bind_group"),
});
}
pub fn update_transform(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
update: UpdateGridTransform,
) {
if let Some((i, group)) = self.id_map.get_mut(&update.id) {
let proj = Projective3::identity()
* Translation3::from(update.pos)
* update.orientation
* Translation3::from(-group.dimensions.cast() / 2.0);
group.transform = proj;
group.transform_inv = proj.inverse();
let updates = [ArrBufUpdate {
offset: *i,
data: &[*group],
}];
let size = self.voxel_groups.len();
self.voxel_groups
.update(device, encoder, belt, size, &updates);
}
}
pub fn update_view(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
size: Vector2<u32>,
camera: &Camera,
) {
let transform =
Transform3::identity() * Translation3::from(camera.pos) * camera.orientation;
let data = View {
width: size.x,
height: size.y,
zoom: camera.scale,
transform,
};
self.view.update(device, encoder, belt, data)
}
pub fn draw<'a>(&'a self, render_pass: &mut wgpu::RenderPass<'a>) {
render_pass.set_pipeline(&self.pipeline);
render_pass.set_bind_group(0, &self.bind_group, &[]);
render_pass.draw(0..4, 0..1);
}
}

View File

@@ -0,0 +1,284 @@
// Vertex shader
struct GlobalLight {
dir: vec3<f32>,
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
};
struct View {
transform: mat4x4<f32>,
width: u32,
height: u32,
zoom: f32,
};
struct VoxelGroup {
transform: mat4x4<f32>,
transform_inv: mat4x4<f32>,
dimensions: vec3<u32>,
offset: u32,
};
@group(0) @binding(0)
var<uniform> view: View;
@group(0) @binding(1)
var<storage, read> voxels: array<u32>;
@group(0) @binding(2)
var<storage, read> voxel_groups: array<VoxelGroup>;
@group(0) @binding(3)
var<storage, read> global_lights: array<GlobalLight>;
@vertex
fn vs_main(
@builtin(vertex_index) vi: u32,
@builtin(instance_index) ii: u32,
) -> VertexOutput {
var out: VertexOutput;
var pos = vec2<f32>(
f32(vi % 2u) * 2.0 - 1.0,
f32(vi / 2u) * 2.0 - 1.0,
) ;
out.clip_position = vec4<f32>(pos.x, pos.y, 0.0, 1.0);
return out;
}
// Fragment shader
@fragment
fn fs_main(
in: VertexOutput,
) -> @location(0) vec4<f32> {
// get position of the pixel; eye at origin, pixel on plane z = 1
let win_dim = vec2<f32>(f32(view.width), f32(view.height));
let aspect = win_dim.y / win_dim.x;
let pixel_pos = vec3<f32>(
(in.clip_position.xy / win_dim - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect),
1.0
);
// move to position in world
let pos = view.transform * vec4<f32>(pixel_pos, 1.0);
let dir = view.transform * vec4<f32>(normalize(pixel_pos), 0.0);
var color = trace_full(pos, dir);
let light_mult = clamp((-dot(dir.xyz, global_lights[0].dir) - 0.99) * 200.0, 0.0, 1.0);
let sky_color = light_mult * vec3<f32>(1.0, 1.0, 1.0);
color += vec4<f32>(sky_color * (1.0 - color.a), 1.0 - color.a);
color.a = 1.0;
return color;
}
const ZERO3F = vec3<f32>(0.0);
const ZERO2F = vec2<f32>(0.0);
const DEPTH = 16u;
const FULL_ALPHA = 0.9999;
fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0;
let group = voxel_groups[gi];
if group.dimensions.x == 0 {
return vec4<f32>(0.0);
}
let dim_f = vec3<f32>(group.dimensions);
let dim_i = vec3<i32>(group.dimensions);
// transform so that group is at 0,0
let pos_start = (group.transform_inv * pos_view).xyz;
let dir = (group.transform_inv * dir_view).xyz;
let dir_if = sign(dir);
// calculate normals
var normals = mat3x3<f32>(
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz,
);
var next_normal = vec3<f32>(0.0, 0.0, 0.0);
// find where ray intersects with group
let plane_point = (vec3<f32>(1.0) - dir_if) / 2.0 * dim_f;
var pos = pos_start;
var t = 0.0;
if outside3f(pos, ZERO3F, dim_f) {
// time of intersection; x = td + p, solve for t
let t_i = (plane_point - pos) / dir;
// points of intersection
let px = pos + t_i.x * dir;
let py = pos + t_i.y * dir;
let pz = pos + t_i.z * dir;
// check if point is in bounds
let hit = vec3<bool>(
inside2f(px.yz, ZERO2F, dim_f.yz),
inside2f(py.xz, ZERO2F, dim_f.xz),
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_i > ZERO3F);
if !any(hit) {
return vec4<f32>(0.0);
}
pos = select(select(pz, py, hit.y), px, hit.x);
t = select(select(t_i.z, t_i.y, hit.y), t_i.x, hit.x);
next_normal = select(select(normals[2], normals[1], hit.y), normals[0], hit.x);
}
var vox_pos = clamp(vec3<i32>(pos), vec3<i32>(0), dim_i - vec3<i32>(1));
let dir_i = vec3<i32>(dir_if);
let dir_u = ((dir_i + vec3<i32>(1)) / 2);
let dir_bits = u32(dir_u.x * 4 + dir_u.y * 2 + dir_u.z);
// time to move 1 unit using dir
let inc_t = abs(1.0 / dir);
var side_len = 256;
// "unsigned" minimum cube coords of current tree
var low_corner = vec3<i32>(0);
// time of next 1 unit plane hit in each direction
var color = vec4<f32>(0.0);
var data_start = 1u;
var i = 0u;
var axis = 0;
var hits = 0;
for (var safety = 0; safety < 1000; safety += 1) {
let node = voxels[group.offset + i];
if node >= LEAF_BIT {
hits += 1;
let vcolor = get_color(node & LEAF_MASK);
if vcolor.a > 0.0 {
let diffuse = max(dot(global_lights[0].dir, next_normal) + 0.1, 0.0);
let ambient = 0.2;
let lighting = max(diffuse, ambient);
let new_color = min(vcolor.xyz * lighting, vec3<f32>(1.0));
color += vec4<f32>(new_color.xyz * vcolor.a, vcolor.a) * (1.0 - color.a);
if color.a > .999 {
return color;
}
}
// move to next face of cube
let half_len = f32(side_len) / 2.0;
let corner = vec3<f32>(low_corner) + vec3<f32>(half_len) + dir_if * half_len;
let next_t = inc_t * abs(corner - pos_start);
axis = select(select(2, 1, next_t.y < next_t.z), 0, next_t.x < next_t.y && next_t.x < next_t.z);
t = next_t[axis];
next_normal = normals[axis];
pos = pos_start + t * dir;
let old = vox_pos[axis];
vox_pos = vec3<i32>(pos) - low_corner;
vox_pos[axis] += select(0, dir_i[axis], vox_pos[axis] == 0 || vox_pos[axis] == side_len - 1);
// if hits == 1 {
// // var axis_c = vec3<f32>(0.0);
// // axis_c[axis] = 1.0;
// // return vec4<f32>(axis_c, 1.0);
// return vec4<f32>(vec3<f32>(vox_pos), 1.0);
// }
} else if inside3i(vox_pos, vec3<i32>(0), vec3<i32>(side_len - 1)) {
let node_pos = data_start + node;
side_len /= 2;
let vcorner = vox_pos / side_len;
vox_pos -= vcorner * side_len;
let j = u32(vcorner.x * 4 + vcorner.y * 2 + vcorner.z);
i = node_pos + j;
data_start = node_pos + 9;
low_corner += vec3<i32>(dir_to_vec(j)) * i32(side_len);
continue;
}
// idrk what to put here tbh but this prolly works; don't zoom out if max
if side_len == 256 {
return color;
}
// get parent info and reset "pointers" to parent
let parent_info_i = data_start - 1;
let parent_info = voxels[group.offset + parent_info_i];
let parent_root = parent_info_i - (parent_info >> 3);
let parent_loc = parent_info & 7;
let loc = 8 - (data_start - 1 - i);
// let test = (parent_root + 9 + voxels[group.offset + parent_root + parent_loc] + loc) == i;
i = parent_root + parent_loc;
data_start = parent_root + 9;
// adjust corner back to parent
let low_corner_adj = vec3<i32>(dir_to_vec(loc)) * i32(side_len);
low_corner -= low_corner_adj;
// update vox pos to be relative to parent
vox_pos += low_corner_adj;
side_len *= 2;
// return vec4<f32>(vec3<f32>(dir_to_vec(parent_loc)) * f32(loc) / 8.0, 1.0);
// return vec4<f32>(vec3<f32>(f32(test)), 1.0);
}
return color;
}
const LEAF_BIT = 1u << 31u;
const LEAF_MASK = ~LEAF_BIT;
// there's no way this is efficient, mod is faster for all I know
fn dir_to_vec(bits: u32) -> vec3<u32> {
return vec3<u32>(extractBits(bits, 2u, 1u), extractBits(bits, 1u, 1u), extractBits(bits, 0u, 1u));
}
fn get_voxel(offset: u32, pos_: vec3<u32>) -> u32 {
var data_start = 1u;
var i = 0u;
var pos = pos_;
var side_len: u32 = 256;
var safety = 0;
while voxels[offset + i] < LEAF_BIT {
let node_pos = data_start + voxels[offset + i];
side_len /= 2u;
let corner = pos / side_len;
pos -= corner * side_len;
let j = corner.x * 4 + corner.y * 2 + corner.z;
i = node_pos + j;
data_start = node_pos + 8;
if safety == 10 {
return 10u;
}
safety += 1;
}
return voxels[offset + i] & LEAF_MASK;
}
fn get_color(id: u32) -> vec4<f32> {
switch id {
case 0u: {
return vec4<f32>(0.0);
}
case 1u: {
return vec4<f32>(0.5, 0.5, 0.5, 1.0);
}
case 2u: {
return vec4<f32>(0.5, 1.0, 0.5, 1.0);
}
case 3u: {
return vec4<f32>(0.5, 0.5, 1.0, 0.5);
}
default: {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
}
}
fn outside3f(v: vec3<f32>, low: vec3<f32>, high: vec3<f32>) -> bool {
return any(v < low) || any(v > high);
}
fn inside2f(v: vec2<f32>, low: vec2<f32>, high: vec2<f32>) -> bool {
return all(v >= low) && all(v <= high);
}
fn inside3i(v: vec3<i32>, low: vec3<i32>, high: vec3<i32>) -> bool {
return all(v >= low) && all(v <= high);
}

View File

@@ -0,0 +1,277 @@
// Vertex shader
struct GlobalLight {
dir: vec3<f32>,
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
};
struct View {
transform: mat4x4<f32>,
width: u32,
height: u32,
zoom: f32,
};
struct VoxelGroup {
transform: mat4x4<f32>,
transform_inv: mat4x4<f32>,
dimensions: vec3<u32>,
offset: u32,
};
@group(0) @binding(0)
var<uniform> view: View;
@group(0) @binding(1)
var<storage, read> voxels: array<u32>;
@group(0) @binding(2)
var<storage, read> voxel_groups: array<VoxelGroup>;
@group(0) @binding(3)
var<storage, read> global_lights: array<GlobalLight>;
@vertex
fn vs_main(
@builtin(vertex_index) vi: u32,
@builtin(instance_index) ii: u32,
) -> VertexOutput {
var out: VertexOutput;
var pos = vec2<f32>(
f32(vi % 2u) * 2.0 - 1.0,
f32(vi / 2u) * 2.0 - 1.0,
) ;
out.clip_position = vec4<f32>(pos.x, pos.y, 0.0, 1.0);
return out;
}
// Fragment shader
@fragment
fn fs_main(
in: VertexOutput,
) -> @location(0) vec4<f32> {
// get position of the pixel; eye at origin, pixel on plane z = 1
let win_dim = vec2<f32>(f32(view.width), f32(view.height));
let aspect = win_dim.y / win_dim.x;
let pixel_pos = vec3<f32>(
(in.clip_position.xy / win_dim - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect),
1.0
);
// move to position in world
let pos = view.transform * vec4<f32>(pixel_pos, 1.0);
let dir = view.transform * vec4<f32>(normalize(pixel_pos), 0.0);
var color = trace_full(pos, dir);
let light_mult = clamp((-dot(dir.xyz, global_lights[0].dir) - 0.99) * 200.0, 0.0, 1.0);
let sky_color = light_mult * vec3<f32>(1.0, 1.0, 1.0);
color += vec4<f32>(sky_color * (1.0 - color.a), 1.0 - color.a);
color.a = 1.0;
return color;
}
const ZERO3F = vec3<f32>(0.0);
const ZERO2F = vec2<f32>(0.0);
const DEPTH = 16u;
const FULL_ALPHA = 0.9999;
fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0;
let group = voxel_groups[gi];
if group.dimensions.x == 0 {
return vec4<f32>(0.0);
}
let dim_f = vec3<f32>(group.dimensions);
let dim_i = vec3<i32>(group.dimensions);
// transform so that group is at 0,0
let pos_start = (group.transform_inv * pos_view).xyz;
let dir = (group.transform_inv * dir_view).xyz;
let dir_if = sign(dir);
// calculate normals
var normals = mat3x3<f32>(
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz,
);
var next_normal = vec3<f32>(0.0, 0.0, 0.0);
// find where ray intersects with group
let plane_point = (vec3<f32>(1.0) - dir_if) / 2.0 * dim_f;
var pos = pos_start;
var t = 0.0;
if outside3f(pos, ZERO3F, dim_f) {
// time of intersection; x = td + p, solve for t
let t_i = (plane_point - pos) / dir;
// points of intersection
let px = pos + t_i.x * dir;
let py = pos + t_i.y * dir;
let pz = pos + t_i.z * dir;
// check if point is in bounds
let hit = vec3<bool>(
inside2f(px.yz, ZERO2F, dim_f.yz),
inside2f(py.xz, ZERO2F, dim_f.xz),
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_i > ZERO3F);
if !any(hit) {
return vec4<f32>(0.0);
}
pos = select(select(pz, py, hit.y), px, hit.x);
t = select(select(t_i.z, t_i.y, hit.y), t_i.x, hit.x);
next_normal = select(select(normals[2], normals[1], hit.y), normals[0], hit.x);
}
var vox_pos = clamp(vec3<i32>(pos), vec3<i32>(0), dim_i - vec3<i32>(1));
let dir_i = vec3<i32>(dir_if);
let dir_u = ((dir_i + vec3<i32>(1)) / 2);
let dir_bits = u32(dir_u.x * 4 + dir_u.y * 2 + dir_u.z);
// time to move 1 unit using dir
let inc_t = abs(1.0 / dir);
var side_len = 256;
// "unsigned" minimum cube coords of current tree
var low_corner = vec3<i32>(0);
// time of next 1 unit plane hit in each direction
var color = vec4<f32>(0.0);
var data_start = 1u;
var i = 0u;
var axis = 0;
for (var safety = 0; safety < 100; safety += 1) {
let node = voxels[group.offset + i];
if node >= LEAF_BIT {
let vcolor = get_color(node & LEAF_MASK);
if vcolor.a > 0.0 {
let diffuse = max(dot(global_lights[0].dir, next_normal) + 0.1, 0.0);
let ambient = 0.2;
let lighting = max(diffuse, ambient);
let new_color = min(vcolor.xyz * lighting, vec3<f32>(1.0));
color += vec4<f32>(new_color.xyz * vcolor.a, vcolor.a) * (1.0 - color.a);
if color.a > .999 {
return color;
}
}
// move to next face of cube
let half_len = f32(side_len) / 2.0;
let corner = vec3<f32>(low_corner) + vec3<f32>(half_len) + dir_if * half_len;
let next_t = inc_t * abs(corner - pos_start);
axis = select(select(2, 1, next_t.y < next_t.z), 0, next_t.x < next_t.y && next_t.x < next_t.z);
t = next_t[axis];
next_normal = normals[axis];
pos = pos_start + t * dir;
let old = vox_pos[axis];
vox_pos = vec3<i32>(pos) - low_corner;
vox_pos[axis] = old + side_len * dir_i[axis];
// var axis_c = vec3<f32>(0.0);
// axis_c[axis] = 1.0;
// return vec4<f32>(axis_c, 1.0);
} else if inside3i(vox_pos, vec3<i32>(0), vec3<i32>(side_len)) {
let node_pos = data_start + node;
side_len /= 2;
let vcorner = vox_pos / side_len;
vox_pos -= vcorner * side_len;
let j = u32(vcorner.x * 4 + vcorner.y * 2 + vcorner.z);
i = node_pos + j;
data_start = node_pos + 9;
low_corner += vec3<i32>(dir_to_vec(j)) * i32(side_len);
continue;
}
// get parent info and reset "pointers" to parent
let parent_info_i = data_start - 1;
if parent_info_i == 0 {
return color;
}
let parent_info = voxels[group.offset + parent_info_i];
let parent_root = parent_info_i - (parent_info >> 3);
let parent_loc = parent_info & 7;
let loc = 8 - (data_start - 1 - i);
// let test = (parent_root + 9 + voxels[group.offset + parent_root + parent_loc] + loc) == i;
i = parent_root + parent_loc;
data_start = parent_root + 9;
// adjust corner back to parent
let low_corner_adj = vec3<i32>(dir_to_vec(loc)) * i32(side_len);
low_corner -= low_corner_adj;
// update vox pos to be relative to parent
vox_pos += low_corner_adj;
side_len *= 2;
// return vec4<f32>(vec3<f32>(dir_to_vec(parent_loc)) * f32(loc) / 8.0, 1.0);
// return vec4<f32>(vec3<f32>(f32(test)), 1.0);
}
return color;
}
const LEAF_BIT = 1u << 31u;
const LEAF_MASK = ~LEAF_BIT;
// there's no way this is efficient, mod is faster for all I know
fn dir_to_vec(bits: u32) -> vec3<u32> {
return vec3<u32>(extractBits(bits, 2u, 1u), extractBits(bits, 1u, 1u), extractBits(bits, 0u, 1u));
}
fn get_voxel(offset: u32, pos_: vec3<u32>) -> u32 {
var data_start = 1u;
var i = 0u;
var pos = pos_;
var side_len: u32 = 256;
var safety = 0;
while voxels[offset + i] < LEAF_BIT {
let node_pos = data_start + voxels[offset + i];
side_len /= 2u;
let corner = pos / side_len;
pos -= corner * side_len;
let j = corner.x * 4 + corner.y * 2 + corner.z;
i = node_pos + j;
data_start = node_pos + 8;
if safety == 10 {
return 10u;
}
safety += 1;
}
return voxels[offset + i] & LEAF_MASK;
}
fn get_color(id: u32) -> vec4<f32> {
switch id {
case 0u: {
return vec4<f32>(0.0);
}
case 1u: {
return vec4<f32>(0.5, 0.5, 0.5, 1.0);
}
case 2u: {
return vec4<f32>(0.5, 1.0, 0.5, 1.0);
}
case 3u: {
return vec4<f32>(0.5, 0.5, 1.0, 0.5);
}
default: {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
}
}
fn outside3f(v: vec3<f32>, low: vec3<f32>, high: vec3<f32>) -> bool {
return any(v < low) || any(v > high);
}
fn inside2f(v: vec2<f32>, low: vec2<f32>, high: vec2<f32>) -> bool {
return all(v >= low) && all(v <= high);
}
fn inside3i(v: vec3<i32>, low: vec3<i32>, high: vec3<i32>) -> bool {
return all(v >= low) && all(v <= high);
}

View File

@@ -0,0 +1,23 @@
use nalgebra::Transform3;
#[repr(C, align(16))]
#[derive(Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct View {
pub transform: Transform3<f32>,
pub width: u32,
pub height: u32,
pub zoom: f32,
}
unsafe impl bytemuck::Pod for View {}
impl Default for View {
fn default() -> Self {
Self {
width: 1,
height: 1,
zoom: 1.0,
transform: Transform3::identity(),
}
}
}

View File

@@ -57,14 +57,15 @@ pub fn update_transform(
} }
pub fn add_chunk( pub fn add_chunk(
query: Query<(Entity, &ChunkPos, &ChunkMesh), Or<(Added<ChunkPos>, Added<ChunkMesh>)>>, query: Query<(Entity, &ChunkPos, &ChunkMesh, &ChunkData), Or<(Added<ChunkPos>, Added<ChunkMesh>, Added<ChunkData>)>>,
mut renderer: ResMut<RenderCommands>, mut renderer: ResMut<RenderCommands>,
) { ) {
for (id, pos, mesh) in query.iter() { for (id, pos, mesh, data) in query.iter() {
renderer.push(RenderCommand::AddChunk(AddChunk { renderer.push(RenderCommand::AddChunk(AddChunk {
id, id,
pos: *pos, pos: *pos,
mesh: mesh.clone() mesh: mesh.clone(),
tree: data.deref().clone(),
})); }));
} }
} }

View File

@@ -1,124 +0,0 @@
use std::collections::{HashMap, HashSet};
use crate::{
client::render::voxel::{VoxelColor, VoxelFace},
util::oct_tree::OctTree,
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{bundle::Bundle, component::Component, entity::Entity, system::Resource};
use block_mesh::{ndshape::RuntimeShape, UnitQuadBuffer, RIGHT_HANDED_Y_UP_CONFIG};
use nalgebra::Vector3;
use ndarray::{s, Array3, Axis};
pub const SIDE_LENGTH: usize = 16 * 16;
pub const SHAPE: (usize, usize, usize) = (SIDE_LENGTH, SIDE_LENGTH, SIDE_LENGTH);
pub const DIMENSIONS: Vector3<usize> = Vector3::new(SIDE_LENGTH, SIDE_LENGTH, SIDE_LENGTH);
pub const LEN: usize = SHAPE.0 * SHAPE.1 * SHAPE.2;
#[derive(Debug, Component, Clone, Deref, DerefMut)]
pub struct ChunkData {
#[deref]
data: OctTree<VoxelColor>,
}
impl ChunkData {
pub fn empty() -> Self {
Self {
data: OctTree::Leaf(VoxelColor::none()),
}
}
pub fn from_tree(t: OctTree<VoxelColor>) -> Self {
Self { data: t }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Component, Default, Deref, DerefMut)]
pub struct ChunkPos(pub Vector3<i32>);
impl ChunkPos {
pub fn new(x: i32, y: i32, z: i32) -> Self {
Self(Vector3::new(x, y, z))
}
}
impl From<Vector3<i32>> for ChunkPos {
fn from(val: Vector3<i32>) -> Self {
ChunkPos(val)
}
}
#[derive(Debug, Clone, Component)]
pub struct ChunkMesh {
pub faces: [Vec<VoxelFace>; 6],
}
impl ChunkMesh {
pub fn from_data(data: &Array3<VoxelColor>) -> Self {
let dim_pad = Vector3::new(
data.len_of(Axis(0)) as u32,
data.len_of(Axis(1)) as u32,
data.len_of(Axis(2)) as u32,
);
let dim = dim_pad - Vector3::from_element(2);
let mut buffer = UnitQuadBuffer::new();
let shape = RuntimeShape::<u32, 3>::new(dim_pad.into());
let slice = data.as_slice().unwrap();
block_mesh::visible_block_faces(
slice,
&shape,
[0; 3],
(dim_pad - Vector3::new(1, 1, 1)).into(),
&RIGHT_HANDED_Y_UP_CONFIG.faces,
&mut buffer,
);
let faces = [2, 1, 0, 5, 4, 3].map(|f| {
buffer.groups[f]
.iter()
.map(|a| {
let i = (a.minimum[0]-1) + (a.minimum[1]-1) * dim.y + (a.minimum[2]-1) * dim.y * dim.x;
let i_pad = a.minimum[0] + a.minimum[1] * dim_pad.y + a.minimum[2] * dim_pad.y * dim_pad.x;
VoxelFace {
index: i,
color: slice[i_pad as usize],
}
})
.collect()
});
Self { faces }
}
}
#[derive(Debug, Clone, Component, Deref, DerefMut)]
pub struct LoadedChunks {
loaded: HashSet<ChunkPos>,
}
impl LoadedChunks {
pub fn new() -> Self {
Self {
loaded: HashSet::new(),
}
}
}
#[derive(Resource, Deref, DerefMut)]
pub struct ChunkMap {
#[deref]
map: HashMap<ChunkPos, Entity>,
pub generating: HashSet<ChunkPos>,
}
impl ChunkMap {
pub fn new() -> Self {
Self {
map: HashMap::new(),
generating: HashSet::new(),
}
}
}
#[derive(Bundle, Clone)]
pub struct ChunkBundle {
pub pos: ChunkPos,
pub data: ChunkData,
pub mesh: ChunkMesh,
}

View File

@@ -0,0 +1,52 @@
use bevy_ecs::component::Component;
use block_mesh::{ndshape::RuntimeShape, UnitQuadBuffer, RIGHT_HANDED_Y_UP_CONFIG};
use nalgebra::Vector3;
use ndarray::{ArrayView3, Axis};
use crate::client::render::voxel::{VoxelColor, /*VoxelFace*/};
#[derive(Debug, Clone, Component)]
pub struct ChunkMesh {
// pub faces: [Vec<VoxelFace>; 6],
}
impl ChunkMesh {
pub fn from_data(data: ArrayView3<VoxelColor>) -> Self {
// let dim_pad = Vector3::new(
// data.len_of(Axis(0)) as u32,
// data.len_of(Axis(1)) as u32,
// data.len_of(Axis(2)) as u32,
// );
// let dim = dim_pad - Vector3::from_element(2);
// let mut buffer = UnitQuadBuffer::new();
// let shape = RuntimeShape::<u32, 3>::new(dim_pad.into());
// let slice = data.as_slice().unwrap();
// block_mesh::visible_block_faces(
// slice,
// &shape,
// [0; 3],
// (dim_pad - Vector3::new(1, 1, 1)).into(),
// &RIGHT_HANDED_Y_UP_CONFIG.faces,
// &mut buffer,
// );
// let faces = [2, 1, 0, 5, 4, 3].map(|f| {
// buffer.groups[f]
// .iter()
// .map(|a| {
// let i = (a.minimum[0] - 1)
// + (a.minimum[1] - 1) * dim.y
// + (a.minimum[2] - 1) * dim.y * dim.x;
// let i_pad = a.minimum[0]
// + a.minimum[1] * dim_pad.y
// + a.minimum[2] * dim_pad.y * dim_pad.x;
// VoxelFace {
// index: i,
// color: slice[i_pad as usize],
// }
// })
// .collect()
// });
Self { /*faces*/ }
}
}

View File

@@ -0,0 +1,80 @@
mod mesh;
pub use mesh::*;
use std::collections::{HashMap, HashSet};
use crate::util::oct_tree::OctTree;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{bundle::Bundle, component::Component, entity::Entity, system::Resource};
use nalgebra::Vector3;
pub const SIDE_LENGTH: usize = 16 * 16;
pub const SHAPE: (usize, usize, usize) = (SIDE_LENGTH, SIDE_LENGTH, SIDE_LENGTH);
pub const DIMENSIONS: Vector3<usize> = Vector3::new(SIDE_LENGTH, SIDE_LENGTH, SIDE_LENGTH);
pub const LEN: usize = SHAPE.0 * SHAPE.1 * SHAPE.2;
#[derive(Debug, Component, Clone, Deref, DerefMut)]
pub struct ChunkData {
#[deref]
data: OctTree,
}
impl ChunkData {
pub fn from_tree(t: OctTree) -> Self {
Self { data: t }
}
pub fn empty() -> Self {
Self {
data: OctTree::from_leaf(0, 8),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Component, Default, Deref, DerefMut)]
pub struct ChunkPos(pub Vector3<i32>);
impl ChunkPos {
pub fn new(x: i32, y: i32, z: i32) -> Self {
Self(Vector3::new(x, y, z))
}
}
impl From<Vector3<i32>> for ChunkPos {
fn from(val: Vector3<i32>) -> Self {
ChunkPos(val)
}
}
#[derive(Debug, Clone, Component, Deref, DerefMut)]
pub struct LoadedChunks {
loaded: HashSet<ChunkPos>,
}
impl LoadedChunks {
pub fn new() -> Self {
Self {
loaded: HashSet::new(),
}
}
}
#[derive(Resource, Deref, DerefMut)]
pub struct ChunkMap {
#[deref]
map: HashMap<ChunkPos, Entity>,
pub generating: HashSet<ChunkPos>,
}
impl ChunkMap {
pub fn new() -> Self {
Self {
map: HashMap::new(),
generating: HashSet::new(),
}
}
}
#[derive(Bundle, Clone)]
pub struct ChunkBundle {
pub pos: ChunkPos,
pub data: ChunkData,
pub mesh: ChunkMesh,
}

View File

@@ -1,4 +1,4 @@
use std::collections::{HashMap, HashSet, VecDeque}; use std::collections::{HashMap, HashSet};
use bevy_ecs::{entity::Entity, system::Commands}; use bevy_ecs::{entity::Entity, system::Commands};
use nalgebra::Vector3; use nalgebra::Vector3;
@@ -16,23 +16,23 @@ use crate::{
pub struct ChunkManager { pub struct ChunkManager {
handles: Vec<ThreadHandle<ChunkLoaderMsg, ServerChunkMsg>>, handles: Vec<ThreadHandle<ChunkLoaderMsg, ServerChunkMsg>>,
i: usize,
n: usize, n: usize,
map: HashMap<ChunkPos, Entity>, map: HashMap<ChunkPos, Entity>,
generating: HashSet<ChunkPos>, generating: HashSet<ChunkPos>,
available: Vec<usize>,
} }
impl ChunkManager { impl ChunkManager {
pub fn new() -> Self { pub fn new() -> Self {
let n = 4; let n = 1;
Self { Self {
handles: std::iter::repeat_with(|| ThreadHandle::spawn(chunk_loader_main)) handles: std::iter::repeat_with(|| ThreadHandle::spawn(chunk_loader_main))
.take(n) .take(n)
.collect(), .collect(),
i: 0,
n, n,
map: HashMap::new(), map: HashMap::new(),
generating: HashSet::new(), generating: HashSet::new(),
available: (0..n).collect(),
} }
} }
pub fn entity_at(&self, pos: &ChunkPos) -> Option<&Entity> { pub fn entity_at(&self, pos: &ChunkPos) -> Option<&Entity> {
@@ -41,29 +41,38 @@ impl ChunkManager {
pub fn is_generating(&self, pos: &ChunkPos) -> bool { pub fn is_generating(&self, pos: &ChunkPos) -> bool {
self.generating.contains(pos) self.generating.contains(pos)
} }
pub fn queue(&mut self, pos: ChunkPos) { pub fn try_load(&mut self, pos: ChunkPos) -> bool {
if !self.is_generating(&pos) { if !self.is_generating(&pos) {
self.handles[self.i].send(ChunkLoaderMsg::Generate(pos)); if let Some(i) = self.available.pop() {
self.i = (self.i + 1) % self.n; self.handles[i].send(ChunkLoaderMsg::Generate(pos));
self.generating.insert(pos); self.generating.insert(pos);
true
} else {
false
}
} else {
false
} }
} }
pub fn update(&mut self, commands: &mut Commands) { pub fn update(&mut self, commands: &mut Commands) {
for msg in self.handles.iter_mut().flat_map(|h| h.recv()) { self.handles.iter_mut().enumerate().for_each(|(i, h)| {
match msg { if let Some(msg) = h.recv().next() {
ServerChunkMsg::ChunkGenerated(chunk) => { self.available.push(i);
let id = commands match msg {
.spawn(ChunkBundle { ServerChunkMsg::ChunkGenerated(chunk) => {
pos: chunk.pos, let id = commands
data: chunk.data, .spawn(ChunkBundle {
mesh: chunk.mesh, pos: chunk.pos,
}) data: chunk.data,
.id(); mesh: chunk.mesh,
self.map.insert(chunk.pos, id); })
self.generating.remove(&chunk.pos); .id();
self.map.insert(chunk.pos, id);
self.generating.remove(&chunk.pos);
}
} }
} }
} });
} }
} }
@@ -98,45 +107,65 @@ impl ExitType for ChunkLoaderMsg {
} }
fn chunk_loader_main(channel: ThreadChannel<ServerChunkMsg, ChunkLoaderMsg>) { fn chunk_loader_main(channel: ThreadChannel<ServerChunkMsg, ChunkLoaderMsg>) {
let mut to_generate = VecDeque::new();
'outer: loop { 'outer: loop {
let msg = channel.recv_wait(); match channel.recv_wait() {
match msg {
ChunkLoaderMsg::Generate(pos) => { ChunkLoaderMsg::Generate(pos) => {
to_generate.push_back(pos); let start = std::time::Instant::now();
// let data = ChunkData::from_tree(OctTree::from_arr(
// data.slice(s![
// 1..data.len_of(Axis(0)) - 1,
// 1..data.len_of(Axis(1)) - 1,
// 1..data.len_of(Axis(2)) - 1
// ]),
// 8,
// ));
let tree = ChunkData::from_tree(generate_tree(pos));
// let data = ChunkData::empty();
let tree_time = std::time::Instant::now() - start;
let start = std::time::Instant::now();
let mut data = generate(pos);
let data_time = std::time::Instant::now() - start;
let start = std::time::Instant::now();
let shape = s![
1..data.len_of(Axis(0)) - 1,
1..data.len_of(Axis(1)) - 1,
1..data.len_of(Axis(2)) - 1
];
let mut slice = data.slice_mut(shape);
let mut iter = tree.into_iter();
slice.assign(&Array3::from_shape_fn((256, 256, 256), |_| {
iter.next().unwrap()
}));
let convert_time = std::time::Instant::now() - start;
let start = std::time::Instant::now();
let mesh = ChunkMesh::from_data(data.map(|i| COLOR_MAP[*i as usize]).view());
let mesh_time = std::time::Instant::now() - start;
println!(
"data: {:<5?} mesh: {:<5?} convert: {:<5?} tree: {:<5?}",
data_time, mesh_time, convert_time, tree_time
);
channel.send(ServerChunkMsg::ChunkGenerated(GeneratedChunk {
pos,
data: tree,
mesh,
}));
} }
ChunkLoaderMsg::Exit => { ChunkLoaderMsg::Exit => {
break 'outer; break 'outer;
} }
} }
if let Some(pos) = to_generate.pop_front() {
let data = generate(pos);
let mesh = ChunkMesh::from_data(&data);
let data = if pos.y > 0 || pos.y < -1 {
ChunkData::empty()
} else {
ChunkData::from_tree(OctTree::from_arr(data.slice(s![
1..data.len_of(Axis(0)) - 1,
1..data.len_of(Axis(1)) - 1,
1..data.len_of(Axis(2)) - 1
])))
};
channel.send(ServerChunkMsg::ChunkGenerated(GeneratedChunk {
pos,
data,
mesh,
}));
}
} }
} }
fn generate(pos: ChunkPos) -> Array3<VoxelColor> { fn generate(pos: ChunkPos) -> Array3<u32> {
let shape = [chunk::SIDE_LENGTH + 2; 3]; let shape = [chunk::SIDE_LENGTH + 2; 3];
if pos.y > 0 { if pos.y > 0 || pos.y < -1 {
return Array3::from_elem(shape, VoxelColor::none()); return Array3::from_elem(shape, 0);
}
if pos.y < -1 {
return Array3::from_elem(shape, VoxelColor::none());
} }
let posf: Vector3<f32> = (pos.cast() * chunk::SIDE_LENGTH as f32) - Vector3::from_element(1.0); let posf: Vector3<f32> = (pos.cast() * chunk::SIDE_LENGTH as f32) - Vector3::from_element(1.0);
let (a, b, c, d) = (0.0, 50.0, 100.0, 127.0); let (a, b, c, d) = (0.0, 50.0, 100.0, 127.0);
@@ -154,29 +183,80 @@ fn generate(pos: ChunkPos) -> Array3<VoxelColor> {
let n = (noise[x + z * (chunk::SIDE_LENGTH + 2)] + 0.022) * (1.0 / 0.044) * d; let n = (noise[x + z * (chunk::SIDE_LENGTH + 2)] + 0.022) * (1.0 / 0.044) * d;
if y < n.max(b) { if y < n.max(b) {
if y < b { if y < b {
VoxelColor { if y > n {
r: 100, 3
g: 100, } else {
b: 255, 1
a: 255,
} }
} else if y < c { } else if y < c {
VoxelColor { 2
r: 100,
g: 255,
b: 100,
a: 255,
}
} else { } else {
VoxelColor { 1
r: 150,
g: 150,
b: 150,
a: 255,
}
} }
} else { } else {
VoxelColor::none() 0
} }
}) })
} }
fn generate_tree(pos: ChunkPos) -> OctTree {
if pos.y > 0 || pos.y < -1 {
return OctTree::from_leaf(0, 8);
}
let posf: Vector3<f32> = pos.cast() * chunk::SIDE_LENGTH as f32;
let (a, b, c, d) = (0.0, 50.0, 100.0, 127.0);
let (noise, ..) =
NoiseBuilder::gradient_2d_offset(posf.x, chunk::SIDE_LENGTH, posf.z, chunk::SIDE_LENGTH)
.with_seed(0)
.with_freq(0.005)
.generate();
OctTree::from_fn(
&mut |p| {
let y = p.y as f32 + posf.y;
let n = (noise[p.x + p.z * chunk::SIDE_LENGTH] + 0.022) * (1.0 / 0.044) * d;
if y < n.max(b) {
if y < b {
if y > n {
3
} else {
1
}
} else if y < c {
2
} else {
1
}
} else {
0
}
},
8,
)
}
const COLOR_MAP: [VoxelColor; 4] = [
VoxelColor {
r: 0,
g: 0,
b: 0,
a: 0,
},
VoxelColor {
r: 150,
g: 150,
b: 150,
a: 255,
},
VoxelColor {
r: 100,
g: 255,
b: 100,
a: 255,
},
VoxelColor {
r: 100,
g: 100,
b: 255,
a: 200,
},
];

View File

@@ -35,7 +35,7 @@ pub fn chunks(
fp.y.floor() as i32, fp.y.floor() as i32,
fp.z.floor() as i32, fp.z.floor() as i32,
); );
let radius: i32 = 5; let radius: i32 = 1;
let width = radius * 2 - 1; let width = radius * 2 - 1;
let mut desired = Vec::new(); let mut desired = Vec::new();
for i in 0..width.pow(3) { for i in 0..width.pow(3) {
@@ -47,6 +47,7 @@ pub fn chunks(
} }
} }
desired.sort_by(|(da, ..), (db, ..)| da.total_cmp(db)); desired.sort_by(|(da, ..), (db, ..)| da.total_cmp(db));
let mut to_load = Vec::new();
for (_, pos) in desired { for (_, pos) in desired {
let coords = pos - player_chunk; let coords = pos - player_chunk;
let pos = ChunkPos(coords); let pos = ChunkPos(coords);
@@ -63,10 +64,15 @@ pub fn chunks(
)); ));
loaded.insert(*pos); loaded.insert(*pos);
} else { } else {
loader.queue(pos); to_load.push(pos);
} }
} }
} }
for pos in to_load {
if !loader.try_load(pos) {
break;
}
}
} }
loader.update(&mut commands); loader.update(&mut commands);
} }

View File

@@ -1,42 +1,205 @@
use std::fmt::Debug; use std::{collections::VecDeque, fmt::Debug};
use nalgebra::Vector3; use nalgebra::Vector3;
use ndarray::{Array3, ArrayView3, Axis}; use ndarray::ArrayView3;
const LEAF_BIT: u32 = 1 << 31;
const DATA_OFFSET: usize = 9;
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, bytemuck::Pod, bytemuck::Zeroable)]
pub struct OctNode(u32);
impl OctNode {
pub fn new_node(addr: u32) -> Self {
Self(addr)
}
pub fn new_leaf(data: u32) -> Self {
Self(data | LEAF_BIT)
}
pub fn new_parent(offset: u32, corner: u32) -> Self {
Self((offset << 3) + corner)
}
pub fn is_leaf(&self) -> bool {
self.0 >= LEAF_BIT
}
pub fn is_node(&self) -> bool {
self.0 < LEAF_BIT
}
pub fn node_data(&self) -> u32 {
self.0
}
pub fn leaf_data(&self) -> u32 {
self.0 & !LEAF_BIT
}
}
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub enum OctTree<T> { pub struct OctTree {
Leaf(T), data: Vec<OctNode>,
Node(Box<[OctTree<T>; 8]>), levels: u32,
side_length: usize,
} }
impl<T: PartialEq + Clone + Debug> OctTree<T> { const CORNERS: [Vector3<usize>; 8] = [
pub fn from_arr(arr: ArrayView3<T>) -> OctTree<T> { Vector3::new(0, 0, 0),
let mut node_arr = arr.map(|x| OctTree::Leaf(x.clone())); Vector3::new(0, 0, 1),
while node_arr.len() > 1 { Vector3::new(0, 1, 0),
let new_data = node_arr.exact_chunks([2; 3]).into_iter().map(|chunk| { Vector3::new(0, 1, 1),
let vec: Vec<OctTree<T>> = chunk.iter().cloned().collect(); Vector3::new(1, 0, 0),
let vec: [OctTree<T>; 8] = vec.try_into().unwrap(); Vector3::new(1, 0, 1),
if let OctTree::Leaf(first) = &chunk[[0; 3]] { Vector3::new(1, 1, 0),
if vec.iter().all(|n| { Vector3::new(1, 1, 1),
if let OctTree::Leaf(d) = n { ];
*d == *first
} else { impl OctTree {
false pub fn from_leaf(val: u32, levels: u32) -> Self {
} Self {
}) { data: vec![OctNode::new_leaf(val)],
return OctTree::Leaf(first.clone()) side_length: 2usize.pow(levels),
} levels,
}
OctTree::Node(Box::new(vec))
}).collect();
node_arr = Array3::from_shape_vec([node_arr.len_of(Axis(0)) / 2; 3], new_data).unwrap();
} }
node_arr[[0; 3]].clone() }
pub fn from_fn(f: &mut impl FnMut(Vector3<usize>) -> u32, levels: u32) -> OctTree {
Self::from_fn_offset(f, levels, Vector3::from_element(0))
}
pub fn from_fn_offset(
f: &mut impl FnMut(Vector3<usize>) -> u32,
levels: u32,
offset: Vector3<usize>,
) -> Self {
let mut data = Vec::new();
data.push(OctNode::new_node(0));
// #######N P SSSSSSSS P
// --------------------| 17
// -------| 7
Self::from_fn_offset_inner(f, &mut data, levels, offset, OctNode::new_parent(17, 7));
if data.len() == 2 {
data.remove(0);
}
Self {
data,
side_length: 2usize.pow(levels),
levels,
}
}
fn from_fn_offset_inner(
f: &mut impl FnMut(Vector3<usize>) -> u32,
accumulator: &mut Vec<OctNode>,
level: u32,
offset: Vector3<usize>,
parent: OctNode,
) {
if level == 0 {
accumulator.push(OctNode::new_leaf(f(offset)));
return;
} else if level == 1 {
let leaves: [OctNode; 8] =
core::array::from_fn(|i| OctNode::new_leaf(f(offset + CORNERS[i])));
if leaves.iter().all(|l| *l == leaves[0]) {
accumulator.push(leaves[0]);
} else {
accumulator.extend_from_slice(&leaves);
accumulator.push(parent);
}
return;
}
let i = accumulator.len();
accumulator.resize(i + 8, OctNode::new_node(0));
accumulator.push(parent);
let mut data_start = 0;
for (j, corner_offset) in CORNERS.iter().enumerate() {
let sub_start = accumulator.len();
let sub_parent_offset = 9 + data_start + 8;
Self::from_fn_offset_inner(
f,
accumulator,
level - 1,
offset + corner_offset * 2usize.pow(level - 1),
OctNode::new_parent(sub_parent_offset as u32, j as u32),
);
let len = accumulator.len() - sub_start;
if len == 1 {
accumulator[i + j] = accumulator[sub_start];
accumulator.pop();
} else {
accumulator[i + j] = OctNode::new_node(data_start as u32);
data_start += len;
}
}
if data_start == 0 {
let first = accumulator[i];
if accumulator[i..i + 8].iter().all(|l| *l == first) {
accumulator.truncate(i);
accumulator.push(first)
}
}
}
pub fn from_arr(arr: ArrayView3<u32>, levels: u32) -> Self {
Self::from_fn(&mut |p| arr[(p.x, p.y, p.z)], levels)
}
pub fn get(&self, mut pos: Vector3<usize>) -> u32 {
let mut data_start = 1;
let mut i = 0;
let mut half_len = self.side_length / 2;
while self.data[i].is_node() {
let node_pos = data_start + self.data[i].node_data() as usize;
let corner = pos / half_len;
pos -= corner * half_len;
half_len /= 2;
let j = corner.x * 4 + corner.y * 2 + corner.z;
i = node_pos + j;
data_start = node_pos + DATA_OFFSET;
}
self.data[i].leaf_data()
}
pub fn raw(&self) -> &[OctNode] {
&self.data
} }
} }
impl<T> OctTree<T> { pub struct OctTreeIter<'a> {
fn get(i: Vector3<usize>) { queue: Vec<OctNode>,
levels: Vec<u32>,
pos: usize,
cur: u32,
run: usize,
data: &'a [OctNode],
}
impl<'a> Iterator for OctTreeIter<'a> {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
if self.run != 0 {
self.run -= 1;
return Some(self.cur);
}
let node = self.queue.pop()?;
let level = self.levels.pop()?;
if node.is_leaf() {
self.run = 8usize.pow(level);
self.cur = node.leaf_data();
} else {
let pos = 0;
let add = &self.data[pos..pos + 8];
self.data = &self.data[pos + DATA_OFFSET..];
self.queue.extend(add.iter().rev());
self.levels.resize(self.levels.len() + 8, level - 1);
}
self.next()
}
}
impl<'a> IntoIterator for &'a OctTree {
type Item = u32;
type IntoIter = OctTreeIter<'a>;
fn into_iter(self) -> Self::IntoIter {
OctTreeIter {
data: &self.data[1..],
pos: 0,
cur: 0,
levels: vec![self.levels],
run: 0,
queue: vec![self.data[0]],
}
} }
} }