cleaned up collision in shader, abstracted out raycast, and added gpu timing

This commit is contained in:
2024-10-03 15:04:14 -04:00
parent 4ddf2ddc87
commit 0dc5a9c2ba
21 changed files with 575 additions and 1187 deletions

View File

@@ -0,0 +1,7 @@
#[repr(C, align(16))]
#[derive(Debug, Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct Chunk {
pub offset: u32,
}
unsafe impl bytemuck::Pod for Chunk {}

View File

@@ -1,12 +0,0 @@
use nalgebra::{Projective3, Vector3};
#[repr(C, align(16))]
#[derive(Debug, Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct VoxelGroup {
pub transform: Projective3<f32>,
pub transform_inv: Projective3<f32>,
pub scale: u32,
pub offset: u32,
}
unsafe impl bytemuck::Pod for VoxelGroup {}

View File

@@ -1,18 +1,18 @@
use wgpu::TextureFormat;
use wgpu::{BufferUsages, ShaderStages, TextureFormat};
use super::{group::VoxelGroup, light::GlobalLight, view::View};
use super::{chunk::Chunk, light::GlobalLight, view::View};
use crate::{
client::render::util::{Storage, StorageTexture, Uniform},
client::render::util::{ArrayBuffer, Texture, Uniform},
util::oct_tree::OctNode,
};
use nalgebra::Vector3;
pub struct Layout {
pub texture: StorageTexture,
pub view: Uniform<View>,
pub voxel_groups: Storage<VoxelGroup>,
pub voxels: Storage<OctNode>,
pub global_lights: Storage<GlobalLight>,
pub chunks: ArrayBuffer<Chunk>,
pub voxel_data: ArrayBuffer<OctNode>,
pub global_lights: ArrayBuffer<GlobalLight>,
pub texture: Texture,
render_bind_layout: wgpu::BindGroupLayout,
compute_bind_layout: wgpu::BindGroupLayout,
render_pipeline_layout: wgpu::PipelineLayout,
@@ -23,27 +23,40 @@ pub struct Layout {
impl Layout {
pub fn init(device: &wgpu::Device, config: &wgpu::SurfaceConfiguration) -> Self {
let view = Uniform::init(device, "view", 0);
let voxels = Storage::init(device, wgpu::ShaderStages::COMPUTE, "voxels", 1);
let voxel_groups = Storage::init(device, wgpu::ShaderStages::COMPUTE, "voxel groups", 2);
let global_lights = Storage::init_with(
let chunks = ArrayBuffer::init(device, "chunks", BufferUsages::STORAGE);
let voxel_data = ArrayBuffer::init_with(
device,
"voxel data",
BufferUsages::STORAGE,
&[OctNode::new_leaf(0)],
);
let global_lights = ArrayBuffer::init_with(
device,
wgpu::ShaderStages::COMPUTE,
"global lights",
3,
BufferUsages::STORAGE,
&[GlobalLight {
direction: Vector3::new(-1.0, -2.3, 2.0).normalize(),
}],
);
let texture = StorageTexture::init(
device,
wgpu::Extent3d {
let desc = wgpu::TextureDescriptor {
label: Some("compute output"),
size: wgpu::Extent3d {
width: config.width,
height: config.height,
depth_or_array_layers: 1,
},
"compute output",
wgpu::ShaderStages::COMPUTE | wgpu::ShaderStages::FRAGMENT,
4,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8Unorm,
usage: wgpu::TextureUsages::STORAGE_BINDING | wgpu::TextureUsages::TEXTURE_BINDING,
view_formats: &[],
};
let texture = Texture::init(
device,
desc,
wgpu::TextureViewDescriptor::default(),
wgpu::SamplerDescriptor::default(),
);
let render_bind_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
@@ -73,10 +86,31 @@ impl Layout {
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
view.bind_group_layout_entry(),
voxels.bind_group_layout_entry(),
voxel_groups.bind_group_layout_entry(),
global_lights.bind_group_layout_entry(),
texture.bind_group_layout_entry(),
chunks.bind_group_layout_entry(
1,
ShaderStages::COMPUTE,
wgpu::BufferBindingType::Storage { read_only: true },
),
voxel_data.bind_group_layout_entry(
2,
ShaderStages::COMPUTE,
wgpu::BufferBindingType::Storage { read_only: true },
),
global_lights.bind_group_layout_entry(
3,
ShaderStages::COMPUTE,
wgpu::BufferBindingType::Storage { read_only: true },
),
wgpu::BindGroupLayoutEntry {
binding: 4,
visibility: ShaderStages::COMPUTE,
ty: wgpu::BindingType::StorageTexture {
access: wgpu::StorageTextureAccess::WriteOnly,
format: texture.format(),
view_dimension: wgpu::TextureViewDimension::D2,
},
count: None,
},
],
label: Some("voxel compute"),
});
@@ -94,8 +128,8 @@ impl Layout {
});
Self {
view,
voxels,
voxel_groups,
voxel_data,
chunks,
global_lights,
texture,
render_bind_layout,
@@ -110,16 +144,10 @@ impl Layout {
device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.render_bind_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&self.texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&self.texture.sampler),
},
self.texture.view_bind_group_entry(0),
self.texture.sampler_bind_group_entry(1),
],
label: Some("tile_bind_group"),
label: Some("voxel render"),
})
}
@@ -128,10 +156,10 @@ impl Layout {
layout: &self.compute_bind_layout,
entries: &[
self.view.bind_group_entry(),
self.voxels.bind_group_entry(),
self.voxel_groups.bind_group_entry(),
self.global_lights.bind_group_entry(),
self.texture.bind_group_entry(),
self.chunks.bind_group_entry(1),
self.voxel_data.bind_group_entry(2),
self.global_lights.bind_group_entry(3),
self.texture.view_bind_group_entry(4),
],
label: Some("voxel compute"),
})

View File

@@ -1,28 +1,25 @@
mod chunk;
mod color;
mod grid;
mod group;
mod layout;
mod light;
mod view;
use super::super::UpdateGridTransform;
use crate::{
client::{
camera::Camera,
render::{
util::{ArrBufUpdate, StorageTexture},
AddChunk, CreateVoxelGrid,
},
},
common::component::chunk,
use crate::client::{
camera::Camera,
render::{AddChunk, CreateVoxelGrid},
};
use bevy_ecs::entity::Entity;
pub use color::*;
use layout::Layout;
use nalgebra::{Projective3, Transform3, Translation3, Vector2, Vector3};
use std::{collections::HashMap, ops::Deref};
use nalgebra::{Transform3, Translation3, Vector2};
use std::{
collections::HashMap,
sync::{Arc, Mutex},
};
use wgpu::include_wgsl;
use {group::VoxelGroup, view::View};
use {chunk::Chunk, view::View};
pub struct VoxelPipeline {
layout: Layout,
@@ -30,7 +27,7 @@ pub struct VoxelPipeline {
compute_bind_group: wgpu::BindGroup,
render_pipeline: wgpu::RenderPipeline,
render_bind_group: wgpu::BindGroup,
id_map: HashMap<Entity, (usize, VoxelGroup)>,
id_map: HashMap<Entity, (usize, Chunk)>,
}
const RENDER_SHADER: wgpu::ShaderModuleDescriptor<'_> = include_wgsl!("shader/render.wgsl");
@@ -82,7 +79,8 @@ impl VoxelPipeline {
pub fn update_shader(&mut self, device: &wgpu::Device) {
let Ok(shader) = std::fs::read_to_string(
env!("CARGO_MANIFEST_DIR").to_owned() + "/src/client/render/voxel/ray_oct/shader/compute.wgsl",
env!("CARGO_MANIFEST_DIR").to_owned()
+ "/src/client/render/voxel/ray_oct/shader/compute.wgsl",
) else {
println!("Failed to reload shader!");
return;
@@ -110,49 +108,27 @@ impl VoxelPipeline {
belt: &mut wgpu::util::StagingBelt,
AddChunk { id, pos, tree, .. }: AddChunk,
) {
let offset = self.layout.voxels.len();
let data = tree.raw();
let updates = [ArrBufUpdate { offset, data }];
let size = offset + data.len();
let offset = self.layout.voxel_data.len() as u32;
self.layout
.voxels
.update(device, encoder, belt, size, &updates);
.voxel_data
.add(device, encoder, belt, tree.raw());
let proj = Projective3::identity()
* Translation3::from((pos.deref() * chunk::SIDE_LENGTH as i32).cast())
* Translation3::from(-chunk::DIMENSIONS.cast() / 2.0);
let group = VoxelGroup {
transform: proj,
transform_inv: proj.inverse(),
scale: chunk::SCALE,
offset: offset as u32,
};
let updates = [ArrBufUpdate {
offset: self.layout.voxel_groups.len(),
data: &[group],
}];
let i = self.layout.voxel_groups.len();
let size = i + 1;
self.layout
.voxel_groups
.update(device, encoder, belt, size, &updates);
let chunk = Chunk { offset };
let i = self.layout.chunks.len();
self.layout.chunks.add(device, encoder, belt, &[chunk]);
self.id_map.insert(id, (i, group));
self.id_map.insert(id, (i, chunk));
self.compute_bind_group = self.layout.compute_bind_group(device);
}
pub fn resize(&mut self, device: &wgpu::Device, size: Vector2<u32>) {
self.layout.texture = StorageTexture::init(
self.layout.texture.resize(
device,
wgpu::Extent3d {
width: size.x,
height: size.y,
depth_or_array_layers: 1,
},
"idk man im tired",
wgpu::ShaderStages::COMPUTE | wgpu::ShaderStages::FRAGMENT,
4,
);
self.compute_bind_group = self.layout.compute_bind_group(device);
self.render_bind_group = self.layout.render_bind_group(device);
@@ -166,21 +142,7 @@ impl VoxelPipeline {
update: UpdateGridTransform,
) {
if let Some((i, group)) = self.id_map.get_mut(&update.id) {
let offset = Vector3::from_element(-(2u32.pow(group.scale) as f32) / 2.0);
let proj = Projective3::identity()
* Translation3::from(update.pos)
* update.orientation
* Translation3::from(offset);
group.transform = proj;
group.transform_inv = proj.inverse();
let updates = [ArrBufUpdate {
offset: *i,
data: &[*group],
}];
let size = self.layout.voxel_groups.len();
self.layout
.voxel_groups
.update(device, encoder, belt, size, &updates);
self.layout.chunks.set(device, encoder, belt, *i, &[*group]);
}
}
@@ -189,7 +151,6 @@ impl VoxelPipeline {
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
size: Vector2<u32>,
camera: &Camera,
) {
let transform =
@@ -197,6 +158,7 @@ impl VoxelPipeline {
let data = View {
zoom: camera.scale,
transform,
..Default::default()
};
self.layout.view.update(device, encoder, belt, data);
}
@@ -212,7 +174,7 @@ impl VoxelPipeline {
pub fn compute(&self, pass: &mut wgpu::ComputePass) {
pass.set_pipeline(&self.compute_pipeline);
pass.set_bind_group(0, &self.compute_bind_group, &[]);
let buf = &self.layout.texture.buf;
let buf = &self.layout.texture.texture;
let x = (buf.width() - 1) / Self::WORKGROUP_SIZE + 1;
let y = (buf.height() - 1) / Self::WORKGROUP_SIZE + 1;
pass.dispatch_workgroups(x, y, 1);

View File

@@ -1,9 +1,9 @@
@group(0) @binding(0)
var<uniform> view: View;
@group(0) @binding(1)
var<storage, read> voxels: array<u32>;
var<storage, read> chunks: array<Chunk>;
@group(0) @binding(2)
var<storage, read> voxel_groups: array<VoxelGroup>;
var<storage, read> voxel_data: array<u32>;
@group(0) @binding(3)
var<storage, read> global_lights: array<GlobalLight>;
@group(0) @binding(4)
@@ -16,12 +16,11 @@ struct GlobalLight {
struct View {
transform: mat4x4<f32>,
zoom: f32,
chunk_scale: u32,
chunk_dist: u32,
};
struct VoxelGroup {
transform: mat4x4<f32>,
transform_inv: mat4x4<f32>,
scale: u32,
struct Chunk {
offset: u32,
};
@@ -38,7 +37,8 @@ fn main(@builtin(global_invocation_id) cell: vec3<u32>) {
let pixel_pos = vec2<f32>(
(vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect)
);
let pos = view.transform * vec4<f32>(pixel_pos, 1.0, 1.0);
let offset = vec3<f32>(f32(1u << (view.chunk_scale - 1)));
let pos = view.transform * vec4<f32>(pixel_pos, 1.0, 1.0) + vec4<f32>(offset, 0.0);
let dir = view.transform * vec4<f32>(normalize(vec3<f32>(pixel_pos, view.zoom)), 0.0);
var color = trace_full(pos, dir);
@@ -53,6 +53,7 @@ fn main(@builtin(global_invocation_id) cell: vec3<u32>) {
const LEAF_BIT = 1u << 31u;
const LEAF_MASK = ~LEAF_BIT;
const MAX_HITS = 10;
const ZERO3F = vec3<f32>(0.0);
const ZERO2F = vec2<f32>(0.0);
@@ -62,126 +63,122 @@ const MAX_ITERS = 10000;
// NOTE: CANNOT GO HIGHER THAN 23 due to how floating point
// numbers are stored and the bit manipulation used
const MAX_SCALE: u32 = 13;
const AMBIENT: f32 = 0.2;
const SPECULAR: f32 = 0.5;
fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0;
let group = voxel_groups[gi];
if group.scale == 0 {
if arrayLength(&voxel_data) == 1 {
return vec4<f32>(0.0);
}
let dimensions = vec3<u32>(1u << group.scale);
let gi = 0;
let chunk = chunks[gi];
let side_len = 1u << view.chunk_scale;
let dimensions = vec3<u32>(side_len);
let dim_f = vec3<f32>(dimensions);
let dim_i = vec3<i32>(dimensions);
// transform so that group is at 0,0
let pos_start = (group.transform_inv * pos_view).xyz;
var dir = (group.transform_inv * dir_view).xyz;
if dir.x == 0 {dir.x = EPSILON;}
if dir.y == 0 {dir.y = EPSILON;}
if dir.z == 0 {dir.z = EPSILON;}
let pos_start = pos_view.xyz;
var dir = dir_view.xyz;
if dir.x == 0 { dir.x = EPSILON; }
if dir.y == 0 { dir.y = EPSILON; }
if dir.z == 0 { dir.z = EPSILON; }
let dir_if = sign(dir);
let dir_uf = max(dir_if, vec3<f32>(0.0));
// find where ray intersects with group
// closest (min) and furthest (max) corners of cube relative to direction
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
let pos_max = dir_uf * dim_f;
// time of intersection; x = td + p, solve for t
let t_min = (pos_min - pos_start) / dir;
let t_max = (pos_max - pos_start) / dir;
// time of entrance and exit of the cube
let t_start = max(max(t_min.x, t_min.y), t_min.z);
let t_end = min(min(t_max.x, t_max.y), t_max.z);
if t_end < t_start { return vec4<f32>(0.0); }
// axis of intersection
let axis = select(select(2u, 1u, t_start == t_min.y), 0u, t_start == t_min.x);
// time to move entire side length in each direction
let inc_t = abs(1.0 / dir) * f32(side_len);
let t = max(0.0, t_start);
let inv_dir_bits = 7 - vec_to_dir(vec3<u32>(dir_uf));
let corner_adj = t_min - inc_t;
// calculate normals
var normals = mat3x3<f32>(
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz,
vec3<f32>(dir_if.x, 0.0, 0.0),
vec3<f32>(0.0, dir_if.y, 0.0),
vec3<f32>(0.0, 0.0, dir_if.z),
);
var axis = 0u;
// find where ray intersects with group
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
// time of intersection; x = td + p, solve for t
var t_min = (pos_min - pos_start) / dir;
if outside3f(pos_start, ZERO3F, dim_f) {
// points of intersection
let px = pos_start + t_min.x * dir;
let py = pos_start + t_min.y * dir;
let pz = pos_start + t_min.z * dir;
let result = cast_ray(chunk.offset, t, axis, inv_dir_bits, inc_t, corner_adj);
return shade_ray(result, pos_start, dir_view.xyz, t_end, normals);
}
// check if point is in bounds
let hit = vec3<bool>(
inside2f(px.yz, ZERO2F, dim_f.yz),
inside2f(py.xz, ZERO2F, dim_f.xz),
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_min > ZERO3F);
if !any(hit) {
return vec4<f32>(0.0);
}
axis = select(select(2u, 1u, hit.y), 0u, hit.x);
}
let t_mult = f32(1u << (MAX_SCALE - group.scale));
t_min *= t_mult;
// time to move 1 unit in each direction
let full = f32(1u << MAX_SCALE);
let inc_t = abs(1.0 / dir) * full;
let t_offset = max(max(t_min.x, t_min.y), t_min.z);
var t = max(0.0, t_offset);
fn shade_ray(result: RayResult, pos_start: vec3<f32>, dir: vec3<f32>, t_end: f32, normals: mat3x3<f32>) -> vec4<f32> {
var hits = result.hits;
let dir_i = vec3<i32>(dir_if);
let dir_u = vec3<u32>(dir_uf);
let dir_bits = vec_to_dir(dir_u);
let inv_dir_bits = 7 - dir_bits;
var node_start = 1u;
var scale = MAX_SCALE - 1;
var scale_exp2 = 0.5;
var color = vec4<f32>(0.0);
var parents = array<u32, MAX_SCALE>();
var prev = LEAF_BIT;
var old_t = t / t_mult;
for (var i = 0u; i < result.len; i += 1u) {
let hit = hits[i];
let id = hit.id;
let t = hit.t;
let axis = hit.axis;
var child = 0u;
let next_t = select(hits[i + 1].t, t_end, i == result.len - 1);
var pos = pos_start + dir * t;
pos[axis] = round(pos[axis]) - f32(dir[axis] < 0.0);
let normal = select(select(normals[0], normals[1], axis == 1), normals[2], axis == 2);
let vcolor = shade(id, pos, normal, dir, next_t - t);
color += vcolor * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
return color;
}
struct RayHit {
t: f32,
id: u32,
axis: u32,
}
struct RayResult {
hits: array<RayHit, MAX_HITS>,
len: u32,
}
fn cast_ray(
data_offset: u32, t_start: f32, axis_start: u32,
inv_dir_bits: u32, inc_t: vec3<f32>, corner_adj: vec3<f32>
) -> RayResult {
var hits = array<RayHit, MAX_HITS>();
var depth = 0u;
var min_alpha = 0.0;
var t = t_start;
var axis = axis_start;
var node_start = 0u;
var scale = MAX_SCALE;
var scale_exp2 = 1.0;
var parents = array<u32, MAX_SCALE>();
var child = inv_dir_bits;
var vox_pos = vec3<f32>(1.0);
let t_center = t_min + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x = 1.5; child |= 4u; }
if t > t_center.y { vox_pos.y = 1.5; child |= 2u; }
if t > t_center.z { vox_pos.z = 1.5; child |= 1u; }
let min_adj = t_min - inc_t;
var prev = 0u;
var iters = 0;
loop {
if iters == MAX_ITERS {
return vec4<f32>(1.0, 0.0, 1.0, 1.0);
}
if iters == MAX_ITERS { break; }
iters += 1;
let t_corner = vox_pos * inc_t + min_adj;
let node = voxels[group.offset + node_start + (child ^ inv_dir_bits)];
let t_corner = vox_pos * inc_t + corner_adj;
let node = voxel_data[data_offset + node_start + (child ^ inv_dir_bits)];
if node >= LEAF_BIT {
// ignore consecutive identical leaves
if node != prev {
if node != LEAF_BIT {
let real_t = t / t_mult;
let dist = real_t - old_t;
old_t = real_t;
let filt = min(dist / 64.0, 1.0);
if prev == LEAF_BIT + 3 {
color.a += filt * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
var pos = (pos_view + dir_view * real_t).xyz;
pos[axis] = round(pos[axis]) - (1.0 - dir_uf[axis]);
let vcolor = get_color(node & LEAF_MASK, pos);
var normal = normals[axis];
let light_color = vec3<f32>(1.0);
let light_dir = global_lights[0].dir;
let diffuse = max(dot(light_dir, normal), 0.0) * light_color;
let ambient = AMBIENT * light_color;
let spec_val = pow(max(dot(dir_view.xyz, reflect(-light_dir, normal)), 0.0), 32.0) * SPECULAR;
let specular = spec_val * light_color;
let new_color = (ambient + diffuse + specular) * vcolor.xyz;
let new_a = min(vcolor.a + spec_val, 1.0);
color += vec4<f32>(new_color.xyz * new_a, new_a) * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
let id = node & LEAF_MASK;
hits[depth] = RayHit(t, id, axis);
min_alpha += min_alpha(id) * (1.0 - min_alpha);
depth += 1u;
prev = node;
if depth == 10 || min_alpha >= FULL_ALPHA { break; }
}
// move to next time point and determine which axis to move along
@@ -226,10 +223,15 @@ fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
node_start = node;
}
}
// let fog = min(t / t_mult / 1000.0, 1.0);
// return vec4<f32>(color.xyz * (1.0 - fog) + vec3<f32>(fog), color.a * (1.0 - fog) + fog);
// return vec4<f32>(f32(iters) / f32(MAX_ITERS), 0.0, 0.0, 1.0);
return color;
return RayResult(hits, depth);
}
fn trace_chunk(
offset: u32,
inv_dir_bits: u32,
t: f32, t_mult: f32, inc_t: vec3<f32>,
min_adj: vec3<f32>
) {
}
fn dir_to_vec(bits: u32) -> vec3<u32> {
@@ -240,29 +242,53 @@ fn vec_to_dir(vec: vec3<u32>) -> u32 {
return vec.x * 4 + vec.y * 2 + vec.z * 1;
}
fn get_color(id: u32, pos: vec3<f32>) -> vec4<f32> {
fn min_alpha(id: u32) -> f32 {
switch id {
case 0u: {return 0.0;}
case 3u: {return 0.5;}
default: {return 1.0;}
}
}
const AMBIENT: f32 = 0.2;
const SPECULAR: f32 = 0.5;
// returns premultiplied
fn shade(id: u32, pos: vec3<f32>, normal: vec3<f32>, dir_view: vec3<f32>, dist: f32) -> vec4<f32> {
var color = vec4<f32>(0.0);
if id == 0 {
return color;
}
let random = random(floor(pos));
let random2 = random(floor(pos) + vec3<f32>(0.0001));
switch id {
case 0u: {
return vec4<f32>(0.0);
color = vec4<f32>(0.0);
}
case 1u: {
let color = vec3<f32>(0.5, 0.5, 0.5 + random * 0.2) * (random2 * 0.4 + 0.8);
return vec4<f32>(color, 1.0);
color = vec4<f32>(vec3<f32>(0.5, 0.5, 0.5 + random * 0.2) * (random2 * 0.4 + 0.8), 1.0);
}
case 2u: {
let color = vec3<f32>(0.4 + random * 0.2, 0.9, 0.4 + random * 0.2) * (random2 * 0.2 + 0.9);
return vec4<f32>(color, 1.0);
color = vec4<f32>(vec3<f32>(0.4 + random * 0.2, 0.9, 0.4 + random * 0.2) * (random2 * 0.2 + 0.9), 1.0);
}
case 3u: {
let color = vec3<f32>(0.5, 0.5, 1.0) * (random2 * 0.2 + 0.8);
return vec4<f32>(color, 0.5);
}
default: {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
let fog = min(dist / 64.0, 1.0);
let a = 0.5;
let rgb = vec3<f32>(0.5, 0.5, 1.0) * (random2 * 0.2 + 0.8);
color = vec4<f32>(rgb * (1.0 - fog * a), a + fog * (1.0 - a));
}
default: {}
}
let light_color = vec3<f32>(1.0);
let light_dir = global_lights[0].dir;
let diffuse = max(dot(light_dir, normal), 0.0) * light_color;
let ambient = AMBIENT * light_color;
let spec_val = pow(max(dot(dir_view.xyz, reflect(-light_dir, normal)), 0.0), 32.0) * SPECULAR;
let specular = spec_val * light_color;
let new_color = (ambient + diffuse + specular) * color.xyz;
let new_a = min(color.a + spec_val, 1.0);
return vec4<f32>(new_color * new_a, new_a);
}
fn random(pos: vec3<f32>) -> f32 {

View File

@@ -1,419 +0,0 @@
@group(0) @binding(0)
var<uniform> view: View;
@group(0) @binding(1)
var<storage, read> voxels: array<u32>;
@group(0) @binding(2)
var<storage, read> voxel_groups: array<VoxelGroup>;
@group(0) @binding(3)
var<storage, read> global_lights: array<GlobalLight>;
@group(0) @binding(4)
var output: texture_storage_2d<rgba8unorm, write>;
struct GlobalLight {
dir: vec3<f32>,
};
struct View {
transform: mat4x4<f32>,
zoom: f32,
};
struct VoxelGroup {
transform: mat4x4<f32>,
transform_inv: mat4x4<f32>,
scale: u32,
offset: u32,
};
@compute
@workgroup_size(8, 8, 1)
fn main(@builtin(global_invocation_id) cell: vec3<u32>) {
let view_dim = textureDimensions(output);
// get position of the pixel; eye at origin, pixel on plane z = 1
if cell.x >= view_dim.x || cell.y >= view_dim.y {
return;
}
let view_dim_f = vec2<f32>(view_dim);
let aspect = view_dim_f.y / view_dim_f.x;
let pixel_pos = vec3<f32>(
(vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect),
view.zoom
);
let pos = view.transform * vec4<f32>(pixel_pos, 1.0);
let dir = view.transform * vec4<f32>(normalize(pixel_pos), 0.0);
var color = trace_full(pos, dir);
let light_mult = clamp((-dot(dir.xyz, global_lights[0].dir) - 0.99) * 200.0, 0.0, 1.0);
let sun_color = light_mult * vec3<f32>(1.0, 1.0, 1.0);
let sky_bg = vec3<f32>(0.3, 0.6, 1.0);
let sky_color = sun_color + sky_bg * (1.0 - light_mult);
color += vec4<f32>(sky_color * (1.0 - color.a), 1.0 - color.a);
color.a = 1.0;
textureStore(output, cell.xy, color);
}
const LEAF_BIT = 1u << 31u;
const LEAF_MASK = ~LEAF_BIT;
const ZERO3F = vec3<f32>(0.0);
const ZERO2F = vec2<f32>(0.0);
const FULL_ALPHA = 0.999;
const EPSILON = 0.00000000001;
const MAX_ITERS = 2000;
// NOTE: CANNOT GO HIGHER THAN 23 due to how floating point
// numbers are stored and the bit manipulation used
const MAX_SCALE: u32 = 10;
fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0;
let group = voxel_groups[gi];
if group.scale == 0 {
return vec4<f32>(0.0);
}
let dimensions = vec3<u32>(1u << group.scale);
let dim_f = vec3<f32>(dimensions);
let dim_i = vec3<i32>(dimensions);
// transform so that group is at 0,0
let pos_start = (group.transform_inv * pos_view).xyz;
var dir = (group.transform_inv * dir_view).xyz;
if dir.x == 0 {dir.x = EPSILON;}
if dir.y == 0 {dir.y = EPSILON;}
if dir.z == 0 {dir.z = EPSILON;}
let dir_if = sign(dir);
let dir_uf = max(dir_if, vec3<f32>(0.0));
// calculate normals
var normals = mat3x3<f32>(
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz,
);
var axis = 0u;
// find where ray intersects with group
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
// time of intersection; x = td + p, solve for t
var t_min = (pos_min - pos_start) / dir;
if outside3f(pos_start, ZERO3F, dim_f) {
// points of intersection
let px = pos_start + t_min.x * dir;
let py = pos_start + t_min.y * dir;
let pz = pos_start + t_min.z * dir;
// check if point is in bounds
let hit = vec3<bool>(
inside2f(px.yz, ZERO2F, dim_f.yz),
inside2f(py.xz, ZERO2F, dim_f.xz),
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_min > ZERO3F);
if !any(hit) {
return vec4<f32>(0.0);
}
axis = select(select(2u, 1u, hit.y), 0u, hit.x);
}
let t_mult = f32(1u << (MAX_SCALE - group.scale));
t_min *= t_mult;
// time to move 1 unit in each direction
let full = f32(1u << MAX_SCALE);
let inc_t = abs(1.0 / dir) * full;
let t_offset = max(max(t_min.x, t_min.y), t_min.z);
var t = max(0.0, t_offset);
let dir_i = vec3<i32>(dir_if);
let dir_u = vec3<u32>((dir_i + vec3<i32>(1)) / 2);
let dir_bits = vec_to_dir(dir_u);
let inv_dir_bits = 7 - dir_bits;
var node_start = 1u;
var scale = MAX_SCALE - 1;
var scale_exp2 = 0.5;
var skip = LEAF_BIT;
var color = vec4<f32>(0.0);
var parents = array<u32, MAX_SCALE>();
var child = 0u;
var vox_pos = vec3<f32>(1.0);
let t_center = t_min + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x = 1.5; child |= 4u; }
if t > t_center.y { vox_pos.y = 1.5; child |= 2u; }
if t > t_center.z { vox_pos.z = 1.5; child |= 1u; }
let min_adj = t_min - inc_t;
var iters = 0;
loop {
if iters == MAX_ITERS {
return vec4<f32>(1.0, 0.0, 1.0, 1.0);
}
iters += 1;
let t_corner = vox_pos * inc_t + min_adj;
let node = voxels[group.offset + node_start + (child ^ inv_dir_bits)];
if node >= LEAF_BIT {
if node != skip && node != LEAF_BIT {
skip = node;
let normal = normals[axis];
let sun_dir = global_lights[0].dir;
let new_pos = pos_view + dir_view * t / t_mult - vec4<f32>(normals[axis] * 0.001, 0.0);
let light = trace_light(new_pos, vec4<f32>(-sun_dir, 0.0));
let diffuse = max(dot(sun_dir, normal) + 0.1, 0.0);
let ambient = 0.2;
let specular = (exp(max(
-(dot(reflect(dir_view.xyz, normal), sun_dir) + 0.90) * 4.0, 0.0
)) - 1.0) * light;
let lighting = max(diffuse * light.a, ambient);
let vcolor = get_color(node & LEAF_MASK);
let new_rgb = min(vcolor.xyz * lighting + specular.xyz + light.xyz * vcolor.xyz, vec3<f32>(1.0));
let new_a = min(vcolor.a + specular.a, 1.0);
let new_color = vec4<f32>(new_rgb, new_a);
color += vec4<f32>(new_color.xyz * new_color.a, new_color.a) * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
// move to next time point and determine which axis to move along
let t_next = t_corner + scale_exp2 * inc_t;
t = min(min(t_next.x, t_next.y), t_next.z);
axis = select(select(0u, 1u, t == t_next.y), 2u, t == t_next.z);
let move_dir = 4u >> axis;
// check if need to pop stack
if (child & move_dir) > 0 {
// calculate new scale; first differing bit after adding
let axis_pos = vox_pos[axis];
// AWARE
let differing = bitcast<u32>(axis_pos) ^ bitcast<u32>(axis_pos + scale_exp2);
scale = (bitcast<u32>(f32(differing)) >> 23) - 127 - (23 - MAX_SCALE);
scale_exp2 = bitcast<f32>((scale + 127 - MAX_SCALE) << 23);
if scale >= MAX_SCALE { break; }
// restore & recalculate parent
let parent_info = parents[scale];
node_start = parent_info >> 3;
child = parent_info & 7;
let scale_vec = vec3<u32>(scale + 23 - MAX_SCALE);
// remove bits lower than current scale
vox_pos = bitcast<vec3<f32>>((bitcast<vec3<u32>>(vox_pos) >> scale_vec) << scale_vec);
}
// move to next child and voxel position
child += move_dir;
vox_pos[axis] += scale_exp2;
} else {
// push current node to stack
parents[scale] = (node_start << 3) + child;
scale -= 1u;
// calculate child node vars
scale_exp2 *= 0.5;
child = 0u;
let t_center = t_corner + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x += scale_exp2; child |= 4u; }
if t > t_center.y { vox_pos.y += scale_exp2; child |= 2u; }
if t > t_center.z { vox_pos.z += scale_exp2; child |= 1u; }
node_start += 8 + node;
}
}
// return vec4<f32>(f32(iters) / f32(MAX_ITERS), 0.0, 0.0, 1.0);
return color;
}
fn trace_light(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0;
let group = voxel_groups[gi];
if group.scale == 0 {
return vec4<f32>(0.0);
}
let dimensions = vec3<u32>(1u << group.scale);
let dim_f = vec3<f32>(dimensions);
let dim_i = vec3<i32>(dimensions);
// transform so that group is at 0,0
let pos_start = (group.transform_inv * pos_view).xyz;
var dir = (group.transform_inv * dir_view).xyz;
if dir.x == 0 {dir.x = EPSILON;}
if dir.y == 0 {dir.y = EPSILON;}
if dir.z == 0 {dir.z = EPSILON;}
let dir_if = sign(dir);
let dir_uf = max(dir_if, vec3<f32>(0.0));
// calculate normals
var normals = mat3x3<f32>(
(group.transform * vec4<f32>(dir_if.x, 0.0, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, dir_if.y, 0.0, 0.0)).xyz,
(group.transform * vec4<f32>(0.0, 0.0, dir_if.z, 0.0)).xyz,
);
var axis = 0u;
// find where ray intersects with group
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
// time of intersection; x = td + p, solve for t
var t_min = (pos_min - pos_start) / dir;
if outside3f(pos_start, ZERO3F, dim_f) {
// points of intersection
let px = pos_start + t_min.x * dir;
let py = pos_start + t_min.y * dir;
let pz = pos_start + t_min.z * dir;
// check if point is in bounds
let hit = vec3<bool>(
inside2f(px.yz, ZERO2F, dim_f.yz),
inside2f(py.xz, ZERO2F, dim_f.xz),
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_min > ZERO3F);
if !any(hit) {
return vec4<f32>(0.0);
}
axis = select(select(2u, 1u, hit.y), 0u, hit.x);
}
let t_mult = f32(1u << (MAX_SCALE - group.scale));
t_min *= t_mult;
// time to move 1 unit in each direction
let full = f32(1u << MAX_SCALE);
let inc_t = abs(1.0 / dir) * full;
let t_offset = max(max(t_min.x, t_min.y), t_min.z);
var t = max(0.0, t_offset);
var old_t = t;
let dir_i = vec3<i32>(dir_if);
let dir_u = vec3<u32>((dir_i + vec3<i32>(1)) / 2);
let dir_bits = vec_to_dir(dir_u);
let inv_dir_bits = 7 - dir_bits;
var node_start = 1u;
var scale = MAX_SCALE - 1;
var scale_exp2 = 0.5;
var mask = vec4<f32>(0.0);
var skip = LEAF_BIT;
var parents = array<u32, MAX_SCALE>();
var child = 0u;
var vox_pos = vec3<f32>(1.0);
let t_center = t_min + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x = 1.5; child |= 4u; }
if t > t_center.y { vox_pos.y = 1.5; child |= 2u; }
if t > t_center.z { vox_pos.z = 1.5; child |= 1u; }
let min_adj = t_min - inc_t;
var data = 0u;
var iters = 0;
loop {
if iters == MAX_ITERS {
return vec4<f32>(1.0, 0.0, 1.0, 1.0);
}
iters += 1;
let t_corner = vox_pos * inc_t + min_adj;
let node = voxels[group.offset + node_start + (child ^ inv_dir_bits)];
if node >= LEAF_BIT {
if node != skip && node != LEAF_BIT {
skip = node;
if data == 3 {
let dist = (t - old_t) / t_mult;
let vcolor = vec4<f32>(vec3<f32>(0.0), min(dist / 12.0, 1.0));
mask += vec4<f32>(vcolor.xyz * vcolor.a, vcolor.a) * (1.0 - mask.a);
}
data = node & LEAF_MASK;
if data != 3 && data != 0 {
let vcolor = get_color(data);
mask += vec4<f32>(vcolor.xyz * vcolor.a, vcolor.a) * (1.0 - mask.a);
}
old_t = t;
if mask.a > FULL_ALPHA { break; }
}
// move to next time point and determine which axis to move along
let t_next = t_corner + scale_exp2 * inc_t;
t = min(min(t_next.x, t_next.y), t_next.z);
axis = select(select(0u, 1u, t == t_next.y), 2u, t == t_next.z);
let move_dir = 4u >> axis;
// check if need to pop stack
if (child & move_dir) > 0 {
// calculate new scale; first differing bit after adding
let axis_pos = vox_pos[axis];
// AWARE
let differing = bitcast<u32>(axis_pos) ^ bitcast<u32>(axis_pos + scale_exp2);
scale = (bitcast<u32>(f32(differing)) >> 23) - 127 - (23 - MAX_SCALE);
scale_exp2 = bitcast<f32>((scale + 127 - MAX_SCALE) << 23);
if scale >= MAX_SCALE { break; }
// restore & recalculate parent
let parent_info = parents[scale];
node_start = parent_info >> 3;
child = parent_info & 7;
let scale_vec = vec3<u32>(scale + 23 - MAX_SCALE);
// remove bits lower than current scale
vox_pos = bitcast<vec3<f32>>((bitcast<vec3<u32>>(vox_pos) >> scale_vec) << scale_vec);
}
// move to next child and voxel position
child += move_dir;
vox_pos[axis] += scale_exp2;
} else {
// push current node to stack
parents[scale] = (node_start << 3) + child;
scale -= 1u;
// calculate child node vars
scale_exp2 *= 0.5;
child = 0u;
let t_center = t_corner + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x += scale_exp2; child |= 4u; }
if t > t_center.y { vox_pos.y += scale_exp2; child |= 2u; }
if t > t_center.z { vox_pos.z += scale_exp2; child |= 1u; }
node_start += 8 + node;
}
}
if data == 3 {
let dist = (t - old_t) / t_mult;
let vcolor = vec4<f32>(vec3<f32>(0.0), min(dist / 12.0, 1.0));
mask += vec4<f32>(vcolor.xyz * vcolor.a, vcolor.a) * (1.0 - mask.a);
}
mask.a = 1.0 - mask.a;
mask = vec4<f32>(mask.a * mask.xyz, mask.a);
return mask;
}
fn dir_to_vec(bits: u32) -> vec3<u32> {
return vec3<u32>(bits >> 2, (bits & 2) >> 1, bits & 1);
}
fn vec_to_dir(vec: vec3<u32>) -> u32 {
return vec.x * 4 + vec.y * 2 + vec.z * 1;
}
fn get_color(id: u32) -> vec4<f32> {
switch id {
case 0u: {
return vec4<f32>(0.0);
}
case 1u: {
return vec4<f32>(0.5, 0.5, 0.5, 1.0);
}
case 2u: {
return vec4<f32>(0.5, 1.0, 0.5, 1.0);
}
case 3u: {
return vec4<f32>(0.5, 0.5, 1.0, 0.5);
}
default: {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
}
}
fn outside3f(v: vec3<f32>, low: vec3<f32>, high: vec3<f32>) -> bool {
return any(v < low) || any(v > high);
}
fn inside2f(v: vec2<f32>, low: vec2<f32>, high: vec2<f32>) -> bool {
return all(v >= low) && all(v <= high);
}
fn inside3i(v: vec3<i32>, low: vec3<i32>, high: vec3<i32>) -> bool {
return all(v >= low) && all(v <= high);
}

View File

@@ -35,67 +35,13 @@ fn main(@builtin(global_invocation_id) cell: vec3<u32>) {
}
let view_dim_f = vec2<f32>(view_dim);
let aspect = view_dim_f.y / view_dim_f.x;
let pixel_pos = vec3<f32>(
(vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect),
view.zoom
let pixel_pos = vec2<f32>(
(vec2<f32>(cell.xy) / view_dim_f - vec2<f32>(0.5)) * vec2<f32>(2.0, -2.0 * aspect)
);
let pos = view.transform * vec4<f32>(pixel_pos, 1.0);
let dir = view.transform * vec4<f32>(normalize(pixel_pos), 0.0);
let pos = view.transform * vec4<f32>(pixel_pos, 1.0, 1.0);
let dir = view.transform * vec4<f32>(normalize(vec3<f32>(pixel_pos, view.zoom)), 0.0);
let start = start_ray(pos, dir);
var color = vec4<f32>(0.0);
let ambient = 0.2;
if start.hit {
var res = ray_next(start.ray, LEAF_BIT);
var normals = start.normals;
let specular = (exp(max(
-(dot(reflect(dir.xyz, normals[res.ray.axis]), global_lights[0].dir) + 0.90) * 4.0, 0.0
)) - 1.0);
while res.data != 0 {
let data = res.data & LEAF_MASK;
if data != 0 {
let vcolor = get_color(data);
let diffuse = max(dot(global_lights[0].dir, normals[res.ray.axis]) + 0.1, 0.0);
let light = max(diffuse, ambient);
let new_color = min(vcolor.xyz * light, vec3<f32>(1.0));
color += vec4<f32>(new_color.xyz * vcolor.a, vcolor.a) * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
let old_t = res.ray.t;
res = ray_next(res.ray, res.data);
if data == 3 {
let dist = (res.ray.t - old_t) / start.t_mult;
let a = min(dist / 12.0, 1.0);
color += vec4<f32>(vec3<f32>(0.0) * a, a) * (1.0 - color.a);
}
}
if color.a != 0 {
let pos = pos + dir * res.ray.t / start.t_mult - vec4<f32>(normals[res.ray.axis] * 0.001, 0.0);
let dir = vec4<f32>(-global_lights[0].dir, 0.0);
let start = start_ray(pos, dir);
res = ray_next(start.ray, LEAF_BIT);
var light = 1.0;
while res.data != 0 {
let data = res.data & LEAF_MASK;
if data != 0 {
let vcolor = get_color(data);
if data != 3 { light -= vcolor.a * light; }
if light <= 0 { break; }
}
let old_t = res.ray.t;
res = ray_next(res.ray, res.data);
if data == 3 {
let dist = (res.ray.t - old_t) / start.t_mult;
let a = min(dist / 12.0, 1.0);
light -= a;
}
}
color = vec4<f32>(color.xyz * max(light, ambient), color.a) + vec4<f32>(vec3<f32>(specular * light), 0.0);
}
// color = vec4<f32>(pos.xyz / 128.0, 1.0);
}
// var color = trace_full(pos, dir);
var color = trace_full(pos, dir);
let light_mult = clamp((-dot(dir.xyz, global_lights[0].dir) - 0.99) * 200.0, 0.0, 1.0);
let sun_color = light_mult * vec3<f32>(1.0, 1.0, 1.0);
let sky_bg = vec3<f32>(0.3, 0.6, 1.0);
@@ -112,49 +58,25 @@ const ZERO3F = vec3<f32>(0.0);
const ZERO2F = vec2<f32>(0.0);
const FULL_ALPHA = 0.999;
const EPSILON = 0.00000000001;
const MAX_ITERS = 2000;
const MAX_ITERS = 10000;
// NOTE: CANNOT GO HIGHER THAN 23 due to how floating point
// numbers are stored and the bit manipulation used
const MAX_SCALE: u32 = 10;
const MAX_SCALE: u32 = 13;
const AMBIENT: f32 = 0.2;
const SPECULAR: f32 = 0.5;
struct Ray {
t: f32,
vox_pos: vec3<f32>,
t_inc: vec3<f32>,
scale: u32,
min_adj: vec3<f32>,
child: u32,
axis: u32,
node_start: u32,
group_offset: u32,
inv_dir_bits: u32,
parents: array<u32, MAX_SCALE>,
};
struct RayResult {
ray: Ray,
data: u32,
}
struct RayStart {
hit: bool,
ray: Ray,
normals: mat3x3<f32>,
t_mult: f32,
}
fn start_ray(pos_view: vec4<f32>, dir_view: vec4<f32>) -> RayStart {
fn trace_full(pos_view: vec4<f32>, dir_view: vec4<f32>) -> vec4<f32> {
let gi = 0;
let group = voxel_groups[gi];
if group.scale == 0 {
return RayStart();
return vec4<f32>(0.0);
}
let dimensions = vec3<u32>(1u << group.scale);
let dim_f = vec3<f32>(dimensions);
let dim_i = vec3<i32>(dimensions);
// transform so that group is at 0,0
let pos = (group.transform_inv * pos_view).xyz;
let pos_start = (group.transform_inv * pos_view).xyz;
var dir = (group.transform_inv * dir_view).xyz;
if dir.x == 0 {dir.x = EPSILON;}
if dir.y == 0 {dir.y = EPSILON;}
@@ -176,12 +98,12 @@ fn start_ray(pos_view: vec4<f32>, dir_view: vec4<f32>) -> RayStart {
// find where ray intersects with group
let pos_min = (vec3<f32>(1.0) - dir_uf) * dim_f;
// time of intersection; x = td + p, solve for t
var t_min = (pos_min - pos) / dir;
if outside3f(pos, ZERO3F, dim_f) {
var t_min = (pos_min - pos_start) / dir;
if outside3f(pos_start, ZERO3F, dim_f) {
// points of intersection
let px = pos + t_min.x * dir;
let py = pos + t_min.y * dir;
let pz = pos + t_min.z * dir;
let px = pos_start + t_min.x * dir;
let py = pos_start + t_min.y * dir;
let pz = pos_start + t_min.z * dir;
// check if point is in bounds
let hit = vec3<bool>(
@@ -190,81 +112,80 @@ fn start_ray(pos_view: vec4<f32>, dir_view: vec4<f32>) -> RayStart {
inside2f(pz.xy, ZERO2F, dim_f.xy),
) && (t_min > ZERO3F);
if !any(hit) {
return RayStart();
return vec4<f32>(0.0);
}
axis = select(select(2u, 1u, hit.y), 0u, hit.x);
}
let t_mult = f32(1u << (MAX_SCALE - group.scale));
t_min *= t_mult;
// time to move 1 unit in each direction
let full = f32(1u << MAX_SCALE);
let t_inc = abs(1.0 / dir) * full;
// time to move entire side length in each direction
let inc_t = abs(1.0 / dir) * full;
let t_offset = max(max(t_min.x, t_min.y), t_min.z);
let t = max(0.0, t_offset);
var t = max(0.0, t_offset);
let dir_i = vec3<i32>(dir_if);
let dir_u = vec3<u32>((dir_i + vec3<i32>(1)) / 2);
let dir_u = vec3<u32>(dir_uf);
let dir_bits = vec_to_dir(dir_u);
let inv_dir_bits = 7 - dir_bits;
let node_start = 1u;
let scale = MAX_SCALE - 1;
let scale_exp2 = 0.5;
let parents = array<u32, MAX_SCALE>();
var node_start = 1u;
var scale = MAX_SCALE - 1;
var scale_exp2 = 0.5;
var color = vec4<f32>(0.0);
var parents = array<u32, MAX_SCALE>();
var prev = LEAF_BIT;
var old_t = t / t_mult;
var child = 0u;
var vox_pos = vec3<f32>(1.0);
let t_center = t_min + scale_exp2 * t_inc;
let t_center = t_min + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x = 1.5; child |= 4u; }
if t > t_center.y { vox_pos.y = 1.5; child |= 2u; }
if t > t_center.z { vox_pos.z = 1.5; child |= 1u; }
let min_adj = t_min - t_inc;
let min_adj = t_min - inc_t;
return RayStart(
true,
Ray(
t,
vox_pos,
t_inc,
scale,
min_adj,
child,
axis,
node_start,
group.offset,
inv_dir_bits,
parents,
),
normals,
t_mult,
);
}
fn ray_next(ray: Ray, skip: u32) -> RayResult {
let group_offset = ray.group_offset;
let t_inc = ray.t_inc;
let min_adj = ray.min_adj;
let inv_dir_bits = ray.inv_dir_bits;
var scale = ray.scale;
var scale_exp2 = bitcast<f32>((scale + 127 - MAX_SCALE) << 23);
var vox_pos = ray.vox_pos;
var t = ray.t;
var node_start = ray.node_start;
var child = ray.child;
var parents = ray.parents;
var axis: u32;
var data = 0u;
var iters = 0;
loop {
let t_corner = vox_pos * t_inc + min_adj;
let node = voxels[group_offset + node_start + (child ^ inv_dir_bits)];
if iters == MAX_ITERS {
return vec4<f32>(1.0, 0.0, 1.0, 1.0);
}
iters += 1;
let t_corner = vox_pos * inc_t + min_adj;
let node = voxels[group.offset + node_start + (child ^ inv_dir_bits)];
if node >= LEAF_BIT {
if node != skip {
data = node;
break;
if node != prev {
if node != LEAF_BIT {
let real_t = t / t_mult;
let dist = real_t - old_t;
old_t = real_t;
let filt = min(dist / 64.0, 1.0);
if prev == LEAF_BIT + 3 {
color.a += filt * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
var pos = (pos_view + dir_view * real_t).xyz;
pos[axis] = round(pos[axis]) - (1.0 - dir_uf[axis]);
let vcolor = get_color(node & LEAF_MASK, pos);
var normal = normals[axis];
let light_color = vec3<f32>(1.0);
let light_dir = global_lights[0].dir;
let diffuse = max(dot(light_dir, normal), 0.0) * light_color;
let ambient = AMBIENT * light_color;
let spec_val = pow(max(dot(dir_view.xyz, reflect(-light_dir, normal)), 0.0), 32.0) * SPECULAR;
let specular = spec_val * light_color;
let new_color = (ambient + diffuse + specular) * vcolor.xyz;
let new_a = min(vcolor.a + spec_val, 1.0);
color += vec4<f32>(new_color.xyz * new_a, new_a) * (1.0 - color.a);
if color.a > FULL_ALPHA { break; }
}
prev = node;
}
// move to next time point and determine which axis to move along
let t_next = t_corner + scale_exp2 * t_inc;
let t_next = t_corner + scale_exp2 * inc_t;
t = min(min(t_next.x, t_next.y), t_next.z);
axis = select(select(0u, 1u, t == t_next.y), 2u, t == t_next.z);
let move_dir = 4u >> axis;
@@ -298,29 +219,17 @@ fn ray_next(ray: Ray, skip: u32) -> RayResult {
// calculate child node vars
scale_exp2 *= 0.5;
child = 0u;
let t_center = t_corner + scale_exp2 * t_inc;
let t_center = t_corner + scale_exp2 * inc_t;
if t > t_center.x { vox_pos.x += scale_exp2; child |= 4u; }
if t > t_center.y { vox_pos.y += scale_exp2; child |= 2u; }
if t > t_center.z { vox_pos.z += scale_exp2; child |= 1u; }
node_start += 8 + node;
node_start = node;
}
}
return RayResult(
Ray(
t,
vox_pos,
t_inc,
scale,
min_adj,
child,
axis,
node_start,
group_offset,
inv_dir_bits,
parents,
),
data
);
// let fog = min(t / t_mult / 1000.0, 1.0);
// return vec4<f32>(color.xyz * (1.0 - fog) + vec3<f32>(fog), color.a * (1.0 - fog) + fog);
// return vec4<f32>(f32(iters) / f32(MAX_ITERS), 0.0, 0.0, 1.0);
return color;
}
fn dir_to_vec(bits: u32) -> vec3<u32> {
@@ -331,19 +240,24 @@ fn vec_to_dir(vec: vec3<u32>) -> u32 {
return vec.x * 4 + vec.y * 2 + vec.z * 1;
}
fn get_color(id: u32) -> vec4<f32> {
fn get_color(id: u32, pos: vec3<f32>) -> vec4<f32> {
let random = random(floor(pos));
let random2 = random(floor(pos) + vec3<f32>(0.0001));
switch id {
case 0u: {
return vec4<f32>(0.0);
}
case 1u: {
return vec4<f32>(0.5, 0.5, 0.5, 1.0);
let color = vec3<f32>(0.5, 0.5, 0.5 + random * 0.2) * (random2 * 0.4 + 0.8);
return vec4<f32>(color, 1.0);
}
case 2u: {
return vec4<f32>(0.5, 1.0, 0.5, 1.0);
let color = vec3<f32>(0.4 + random * 0.2, 0.9, 0.4 + random * 0.2) * (random2 * 0.2 + 0.9);
return vec4<f32>(color, 1.0);
}
case 3u: {
return vec4<f32>(0.5, 0.5, 1.0, 0.5);
let color = vec3<f32>(0.5, 0.5, 1.0) * (random2 * 0.2 + 0.8);
return vec4<f32>(color, 0.5);
}
default: {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
@@ -351,6 +265,10 @@ fn get_color(id: u32) -> vec4<f32> {
}
}
fn random(pos: vec3<f32>) -> f32 {
return fract(sin(dot(pos, vec3<f32>(12.9898, 78.233, 25.1279))) * 43758.5453123);
}
fn outside3f(v: vec3<f32>, low: vec3<f32>, high: vec3<f32>) -> bool {
return any(v < low) || any(v > high);
}

View File

@@ -1,10 +1,14 @@
use nalgebra::Transform3;
use crate::common::component::chunk::SCALE;
#[repr(C, align(16))]
#[derive(Clone, Copy, PartialEq, bytemuck::Zeroable)]
pub struct View {
pub transform: Transform3<f32>,
pub zoom: f32,
pub chunk_scale: u32,
pub chunk_radius: u32,
}
unsafe impl bytemuck::Pod for View {}
@@ -14,6 +18,8 @@ impl Default for View {
Self {
zoom: 1.0,
transform: Transform3::identity(),
chunk_scale: SCALE,
chunk_radius: 2,
}
}
}