RAx = 0 RAy + REy = L REy = 1/2 L RAx - AB - AK cos a = 0 RAy - AK sin a = 0 AB + BK cos d - BH cos d - BC = 0 BK sin d + BH sin d = -1/3 L BC + CJ cos d - CG cos d - CD = 0 CJ sin d + CG sin d = -1/3 L CD + ID cos d - DF cos d - DE = 0 ID sin d + DF sin d = -1/3 L DE + FE cos a = 0 REy - FE sin a = 0 DF cos d + GF cos b - EF cos a = 0 DF sin d - GF sin b + EF sin a = 0 CG cos d + GH cos c - FG cos b = 0 CG sin d - GH sin c + FG sin b = 0 IH + BH cos d - HG cos c = 0 # BH sin d + HG sin c = 0 # IJ cos c - ID cos d - IH = 0 JI sin c + ID sin d = 0 # JK cos b - CJ cos d - IJ cos c = 0 AK cos a - BK cos d - JK cos b = 0 order: RAx RAy REy AB BC CD DE EF FG GH HI IJ JK KA BK CJ DI BH CG DF map: cos a = Ca map: cos b = Cb map: cos c = Cc map: cos d = Cd map: sin a = Sa map: sin b = Sb map: sin c = Sc map: sin d = Sd map: -1/3 L = -(1/3)*load map: 1/2 L = (1/2)*load map: L = load map: matrix = Coef